找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Manifolds and Homogeneous Geodesics; Valerii Berestovskii,Yurii Nikonorov Book 2020 Springer Nature Switzerland AG 2020 Geodesi

[復(fù)制鏈接]
樓主: 頌歌
11#
發(fā)表于 2025-3-23 10:38:28 | 只看該作者
Homogeneous Riemannian Manifolds,annian manifold and topological properties of homogeneous spaces. We consider the infinitesimal structure of homogeneous Riemannian manifolds and the structure of the set of G-invariant Riemannian metrics on a homogeneous space G=H. Moreover, we derive useful formulas for the sectional curvature, th
12#
發(fā)表于 2025-3-23 14:26:12 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:42 | 只看該作者
Generalized Normal Homogeneous Manifolds With Intrinsic Metrics, of geodesic orbit spaces with non-negative sectional curvature, which properly includes the class of all normal homogeneous Riemannian spaces, 2) include naturally reductive compact homogeneous Riemannian manifolds of positive Euler characteristic, 3) are exactly homogeneous spaces .(. + 1) = .(1)
14#
發(fā)表于 2025-3-24 01:56:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:48:18 | 只看該作者
16#
發(fā)表于 2025-3-24 07:47:54 | 只看該作者
Riemannian Manifolds, Synge theorem, the Rauch comparison theorem, the Hadamard–Cartan theorem, and the O’Neill formulas for Riemannian submersions. We also give or indicate some geometric applications of the main results.
17#
發(fā)表于 2025-3-24 12:30:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:27 | 只看該作者
1439-7382 self-contained general introduction to the theory of homoge.This book is devoted to Killing vector fields and the one-parameter isometry groups of Riemannian manifolds generated by them. It also provides a detailed introduction to homogeneous geodesics, that is, geodesics that are integral curves o
19#
發(fā)表于 2025-3-24 21:12:39 | 只看該作者
,Clifford–Wolf Homogeneous Riemannian Manifolds, Clifford–Killing spaces, that is, real vector spaces of Killing vector fields of constant length, on odd-dimensional round spheres, and discuss numerous connections between these spaces and various classical objects. Finally, we consider some results related to restrictively Clifford–Wolf homogeneous Riemannian manifolds.
20#
發(fā)表于 2025-3-24 23:36:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江津市| 盘锦市| 佛山市| 德保县| 汉阴县| 桓仁| 古田县| 吴江市| 简阳市| 宁强县| 和静县| 鄱阳县| 诸暨市| 龙川县| 德安县| 泉州市| 临朐县| 江门市| 汽车| 泗阳县| 石景山区| 文山县| 抚顺县| 怀来县| 万荣县| 鄂托克前旗| 渭南市| 宽城| 宜川县| 健康| 襄汾县| 乐安县| 金堂县| 龙川县| 江津市| 安新县| 南澳县| 武功县| 资兴市| 乐安县| 盖州市|