找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Manifolds; An Introduction to C John M. Lee Textbook 19971st edition Springer Science+Business Media New York 1997 Riemannian ge

[復(fù)制鏈接]
查看: 46238|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:27:04 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Manifolds
副標(biāo)題An Introduction to C
編輯John M. Lee
視頻videohttp://file.papertrans.cn/831/830319/830319.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Riemannian Manifolds; An Introduction to C John M. Lee Textbook 19971st edition Springer Science+Business Media New York 1997 Riemannian ge
描述This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds. The author has selected a set of topics that can reasonably be covered in ten to fifteen weeks, instead of making any attempt to provide an encyclopedic treatment of the subject. The book begins with a careful treatment of the machinery of metrics, connections, and geodesics,without which one cannot claim to be doing Riemannian geometry. It then introduces the Riemann curvature tensor, and quickly moves on to submanifold theory in order to give the curvature tensor a concrete quantitative interpretation. From then on, all efforts are bent toward proving the four most fundamental theorems relating curvature and topology: the Gauss–Bonnet theorem (expressing the total curvature of a surface in term so fits topological type), the Cartan–Hadamard theorem (restricting the topolog
出版日期Textbook 19971st edition
關(guān)鍵詞Riemannian geometry; Tensor; Volume; curvature; manifold
版次1
doihttps://doi.org/10.1007/b98852
isbn_ebook978-0-387-22726-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Riemannian Manifolds影響因子(影響力)




書目名稱Riemannian Manifolds影響因子(影響力)學(xué)科排名




書目名稱Riemannian Manifolds網(wǎng)絡(luò)公開度




書目名稱Riemannian Manifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Manifolds被引頻次




書目名稱Riemannian Manifolds被引頻次學(xué)科排名




書目名稱Riemannian Manifolds年度引用




書目名稱Riemannian Manifolds年度引用學(xué)科排名




書目名稱Riemannian Manifolds讀者反饋




書目名稱Riemannian Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:25:52 | 只看該作者
Review of Tensors, Manifolds, and Vector Bundles,reviewing the basic definitions and properties of tensors on a finite-dimensional vector space. When we put together spaces of tensors on a manifold, we obtain a particularly useful type of geometric structure called a “vector bundle,” which plays an important role in many of our investigations. Bec
板凳
發(fā)表于 2025-3-22 04:10:17 | 只看該作者
地板
發(fā)表于 2025-3-22 05:13:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:16:23 | 只看該作者
6#
發(fā)表于 2025-3-22 15:48:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:44:33 | 只看該作者
Curvature,ocally isometric, we are led to a definition of the Riemannian curvature tensor as a measure of the failure of second covariant derivatives to commute. Then we prove the main result of this chapter: A manifold has zero curvature if and only if it is flat, that is, locally isometric to Euclidean spac
8#
發(fā)表于 2025-3-23 00:43:17 | 只看該作者
9#
發(fā)表于 2025-3-23 03:34:36 | 只看該作者
10#
發(fā)表于 2025-3-23 07:22:00 | 只看該作者
Curvature and Topology, and topology. Before treating the topological theorems themselves, we prove some comparison theorems for manifolds whose curvature is bounded above. These comparisons are based on a simple ODE comparison theorem due to Sturm, and show that if the curvature is bounded above by a constant, then the m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澄城县| 盐源县| 宜良县| 南宁市| 迭部县| 仙居县| 汤原县| 策勒县| 咸丰县| 平武县| 古丈县| 延津县| 曲周县| 阿城市| 黄骅市| 天水市| 华坪县| 拉萨市| 大足县| 阳信县| 广灵县| 永昌县| 芮城县| 泸州市| 房产| 淮滨县| 普兰县| 诏安县| 榕江县| 木兰县| 龙山县| 东源县| 苏尼特右旗| 嘉义县| 凌源市| 沂水县| 兴业县| 甘肃省| 阿克苏市| 黄骅市| 古浪县|