找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry and Geometric Analysis; Jürgen Jost Textbook 20023rd edition Springer-Verlag Berlin Heidelberg 2002 Floer homology.Fun

[復制鏈接]
查看: 54595|回復: 44
樓主
發(fā)表于 2025-3-21 18:31:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Geometry and Geometric Analysis
編輯Jürgen Jost
視頻videohttp://file.papertrans.cn/831/830311/830311.mp4
概述Established textbook.Continues to lead its readers to some of the hottest topics of contemporary mathematical research.Includes supplementary material:
叢書名稱Universitext
圖書封面Titlebook: Riemannian Geometry and Geometric Analysis;  Jürgen Jost Textbook 20023rd edition Springer-Verlag Berlin Heidelberg 2002 Floer homology.Fun
描述Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less system- atic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geom- etry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive intro- duction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and an- alytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate cou
出版日期Textbook 20023rd edition
關鍵詞Floer homology; Functionals; Riemannian geometry; curvature; derivative; differential equation; field theo
版次3
doihttps://doi.org/10.1007/978-3-662-04672-2
isbn_ebook978-3-662-04672-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)




書目名稱Riemannian Geometry and Geometric Analysis影響因子(影響力)學科排名




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡公開度




書目名稱Riemannian Geometry and Geometric Analysis網(wǎng)絡公開度學科排名




書目名稱Riemannian Geometry and Geometric Analysis被引頻次




書目名稱Riemannian Geometry and Geometric Analysis被引頻次學科排名




書目名稱Riemannian Geometry and Geometric Analysis年度引用




書目名稱Riemannian Geometry and Geometric Analysis年度引用學科排名




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋




書目名稱Riemannian Geometry and Geometric Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:55:13 | 只看該作者
0172-5939 nifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate cou978-3-662-04672-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 04:13:10 | 只看該作者
地板
發(fā)表于 2025-3-22 07:34:43 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:28 | 只看該作者
Parallel Transport, Connections, and Covariant Derivatives,Let . be a vector field on ?., . a vector at ..∈ ?.. We want to analyse how one takes the derivative of . at .. in the direction .. For this derivative, one forms
6#
發(fā)表于 2025-3-22 16:40:47 | 只看該作者
7#
發(fā)表于 2025-3-22 19:28:12 | 只看該作者
,Symmetric Spaces and K?hler Manifolds,We consider the complex vector space ?... A complex linear subspace of ?.. of complex dimension one is called a line. We define the complex projective space ??. as the space of all lines in ?...
8#
發(fā)表于 2025-3-22 22:13:01 | 只看該作者
Variational Problems from Quantum Field Theory,A prototypical situation for the functionals that we are going to consider is the following:
9#
發(fā)表于 2025-3-23 01:58:30 | 只看該作者
Harmonic Maps,We let . and . be Riemannian manifolds of dimension . and ., resp.
10#
發(fā)表于 2025-3-23 07:44:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
康马县| 樟树市| 中宁县| 城口县| 吉林省| 河北省| 韶山市| 莱阳市| 含山县| 鲁山县| 朝阳市| 哈尔滨市| 海门市| 沿河| 南宁市| 都昌县| 台南县| 修武县| 图们市| 凌源市| 潍坊市| 三台县| 大安市| 都匀市| 太保市| 抚顺县| 老河口市| 扶风县| 徐水县| 临海市| 阳山县| 当雄县| 合水县| 福贡县| 阳东县| 黑龙江省| 台北市| 固原市| 澄迈县| 增城市| 无棣县|