找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
查看: 15820|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:24:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Riemannian Geometry
編輯Sylvestre Gallot,Dominique Hulin,Jacques Lafontain
視頻videohttp://file.papertrans.cn/831/830308/830308.mp4
概述Includes supplementary material:
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: Riemannian Geometry;  Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 2004Latest edition Springer-Verlag Berlin Heidelberg 2004
描述From the preface:Many years have passed since the first edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geometry is not only a fascinating field in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincaré conjecture. In another direction, Geometric Group Theory, a very active field nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. But let us stop hogging the limelight. This is justa textbook. We hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi
出版日期Textbook 2004Latest edition
關(guān)鍵詞Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
版次3
doihttps://doi.org/10.1007/978-3-642-18855-8
isbn_softcover978-3-540-20493-0
isbn_ebook978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書(shū)目名稱Riemannian Geometry影響因子(影響力)




書(shū)目名稱Riemannian Geometry影響因子(影響力)學(xué)科排名




書(shū)目名稱Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Riemannian Geometry網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Riemannian Geometry被引頻次




書(shū)目名稱Riemannian Geometry被引頻次學(xué)科排名




書(shū)目名稱Riemannian Geometry年度引用




書(shū)目名稱Riemannian Geometry年度引用學(xué)科排名




書(shū)目名稱Riemannian Geometry讀者反饋




書(shū)目名稱Riemannian Geometry讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:37 | 只看該作者
地板
發(fā)表于 2025-3-22 05:36:38 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
5#
發(fā)表于 2025-3-22 11:35:17 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
6#
發(fā)表于 2025-3-22 15:28:49 | 只看該作者
0172-5939 e hope that our point of view of working intrinsically with manifolds as early as possible, and testing every new notion on a series of recurrent examples (see the introduction to the first edi978-3-540-20493-0978-3-642-18855-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
7#
發(fā)表于 2025-3-22 19:37:06 | 只看該作者
8#
發(fā)表于 2025-3-23 00:43:47 | 只看該作者
Analysis on Riemannian manifolds and Ricci curvature,erties of the Laplacian on a bounded Euclidean domain and on a compact Riemannian manifold are very similar, and so are the proofs. It can be said that the difficulties of the latter case, compared with the former, are essentially conceptual.
9#
發(fā)表于 2025-3-23 04:16:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:23:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
故城县| 政和县| 琼结县| 涿鹿县| 高州市| 沅江市| 兴化市| 司法| 海门市| 乌兰察布市| 大足县| 温州市| 乌什县| 仁寿县| 阳春市| 汉源县| 徐水县| 临泉县| 德格县| 马边| 兴仁县| 梁平县| 太仓市| 凤凰县| 鹤壁市| 广水市| 中宁县| 金山区| 德江县| 洛扎县| 贵港市| 南郑县| 万山特区| 平乡县| 清苑县| 兴山县| 永定县| 潜山县| 怀宁县| 讷河市| 策勒县|