找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 19871st edition Springer-Verlag Berlin Heidelberg 1987 Ri

[復(fù)制鏈接]
查看: 35335|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:53:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Geometry
編輯Sylvestre Gallot,Dominique Hulin,Jacques Lafontain
視頻videohttp://file.papertrans.cn/831/830307/830307.mp4
叢書名稱Universitext
圖書封面Titlebook: Riemannian Geometry;  Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 19871st edition Springer-Verlag Berlin Heidelberg 1987 Ri
描述Traditional point of view: pinched manifolds 147 Almost flat pinching 148 Coarse point of view: compactness theorems of Gromov and Cheeger 149 K. CURVATURE AND REPRESENTATIONS OF THE ORTHOGONAL GROUP Decomposition of the space of curvature tensors 150 Conformally flat manifolds 153 The second Bianchi identity 154 CHAPITRE IV : ANALYSIS ON MANIFOLDS AND THE RICCI CURVATURE A. MANIFOLDS WITH BOUNDARY Definition 155 The Stokes theorem and integration by parts 156 B. BISHOP‘S INEQUALITY REVISITED 159 Some commutations formulas Laplacian of the distance function 160 Another proof of Bishop‘s inequality 161 The Heintze-Karcher inequality 162 C. DIFFERENTIAL FORMS AND COHOMOLOGY The de Rham complex 164 Differential operators and their formal adjoints 165 The Hodge-de Rham theorem 167 A second visit to the Bochner method 168 D. BASIC SPECTRAL GEOMETRY 170 The Laplace operator and the wave equation Statement of the basic results on the spectrum 172 E. SOME EXAMPLES OF SPECTRA 172 Introduction The spectrum of flat tori 174 175 Spectrum of (sn, can) F. THE MINIMAX PRINCIPLE 177 The basic statements VIII G. THE RICCI CURVATURE AND EIGENVALUES ESTIMATES Introduction 181 Bishop‘s inequality and
出版日期Textbook 19871st edition
關(guān)鍵詞Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; relativity
版次1
doihttps://doi.org/10.1007/978-3-642-97026-9
isbn_ebook978-3-642-97026-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Riemannian Geometry影響因子(影響力)




書目名稱Riemannian Geometry影響因子(影響力)學科排名




書目名稱Riemannian Geometry網(wǎng)絡(luò)公開度




書目名稱Riemannian Geometry網(wǎng)絡(luò)公開度學科排名




書目名稱Riemannian Geometry被引頻次




書目名稱Riemannian Geometry被引頻次學科排名




書目名稱Riemannian Geometry年度引用




書目名稱Riemannian Geometry年度引用學科排名




書目名稱Riemannian Geometry讀者反饋




書目名稱Riemannian Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:12:01 | 只看該作者
Curvature,e . is a vector field such that . = .. We already met in 2.64 the second covariant derivative of a function, which is a symmetric 2-tensor. This property is no more true for the second derivative of a tensor. However, . only depends on ..
地板
發(fā)表于 2025-3-22 08:09:01 | 只看該作者
Analysis on Manifolds and the Ricci Curvature,ignore mathematical beings which locally behave like domains on ., just as manifolds locally behave like .. On the other hand, when doing Analysis on manifolds, it may useful to cut them into small pieces (cf. for example 4.65 and 4.68 below). These pieces are no more manifolds, but they will be man
5#
發(fā)表于 2025-3-22 09:14:19 | 只看該作者
Universitexthttp://image.papertrans.cn/r/image/830307.jpg
6#
發(fā)表于 2025-3-22 13:42:14 | 只看該作者
7#
發(fā)表于 2025-3-22 18:24:45 | 只看該作者
Springer-Verlag Berlin Heidelberg 1987
8#
發(fā)表于 2025-3-22 23:27:50 | 只看該作者
9#
發(fā)表于 2025-3-23 02:52:43 | 只看該作者
Differential Manifolds,A subset . ? . is an . . . if, for any χ ∈ ., there exists a neighborhood . of χ in . and a . submersion .: . → . such that . ? . = . (0) (we recall tnat . is a submersion if its differential map is surjective at each point).
10#
發(fā)表于 2025-3-23 09:04:13 | 只看該作者
Riemannian Metrics,A Riemannian metric on a manifold M is a family of scalar products defined on each tangent space . and depending smoothly on .:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金堂县| 虞城县| 大新县| 杭州市| 城口县| 融水| 青川县| 大姚县| 玛曲县| 伽师县| 娄烦县| 绥中县| 清苑县| 三江| 微博| 五家渠市| 镇江市| 河曲县| 基隆市| 南丹县| 古田县| 昌邑市| 平顺县| 东安县| 安图县| 临城县| 睢宁县| 德格县| 武邑县| 怀来县| 美姑县| 元江| 太仓市| 上林县| 阿拉尔市| 青河县| 合水县| 宣武区| 文化| 合作市| 奇台县|