找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Peter Petersen Textbook 2016Latest edition Springer International Publishing AG 2016 Riemannian geometry textbook ado

[復制鏈接]
樓主: Enclosure
11#
發(fā)表于 2025-3-23 10:33:16 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:19 | 只看該作者
Curvature, the realm of geometry. The most elementary way of defining curvature is to set it up as an integrability condition. This indicates that when it vanishes it should be possible to solve certain differential equations, e.g., that the metric is Euclidean. This was in fact one of Riemann’s key insights.
13#
發(fā)表于 2025-3-23 18:19:35 | 只看該作者
14#
發(fā)表于 2025-3-23 23:15:28 | 只看該作者
Killing Fields, subsequent section to prove Bochner’s theorems about the lack of Killing fields on manifolds with negative Ricci curvature. In the last section we present several results about how Killing fields influence the topology of manifolds with positive sectional curvature. This is a somewhat more recent line of inquiry.
15#
發(fā)表于 2025-3-24 02:30:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:02 | 只看該作者
Derivatives,This chapter introduces several important notions of derivatives of tensors. In chapters 5 and 6 we also introduce partial derivatives of functions into Riemannian manifolds.
17#
發(fā)表于 2025-3-24 14:25:25 | 只看該作者
Convergence,In this chapter we offer an introduction to several of the convergence ideas for Riemannian manifolds.
18#
發(fā)表于 2025-3-24 17:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:15 | 只看該作者
Peter PetersenIncludes a substantial addition of unique and enriching exercises.Exists as one of the few Works to combine both the geometric parts of Riemannian geometry and analytic aspects of the theory.Presents
20#
發(fā)表于 2025-3-25 02:51:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
尚义县| 盘锦市| 霞浦县| 柳河县| 长汀县| 广灵县| 宁强县| 阿合奇县| 黄平县| 扎鲁特旗| 大悟县| 左贡县| 徐水县| 平潭县| 青岛市| 浦城县| 富宁县| 资阳市| 金堂县| 惠东县| 襄樊市| 泰和县| 旅游| 威远县| 晋城| 柘城县| 鄂伦春自治旗| 宁阳县| 五常市| 彭山县| 松原市| 琼海市| 闵行区| 荥经县| 和顺县| 永清县| 龙南县| 宜兰市| 穆棱市| 和平县| 宕昌县|