找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Peter Petersen Textbook 2016Latest edition Springer International Publishing AG 2016 Riemannian geometry textbook ado

[復制鏈接]
樓主: Enclosure
11#
發(fā)表于 2025-3-23 10:33:16 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:19 | 只看該作者
Curvature, the realm of geometry. The most elementary way of defining curvature is to set it up as an integrability condition. This indicates that when it vanishes it should be possible to solve certain differential equations, e.g., that the metric is Euclidean. This was in fact one of Riemann’s key insights.
13#
發(fā)表于 2025-3-23 18:19:35 | 只看該作者
14#
發(fā)表于 2025-3-23 23:15:28 | 只看該作者
Killing Fields, subsequent section to prove Bochner’s theorems about the lack of Killing fields on manifolds with negative Ricci curvature. In the last section we present several results about how Killing fields influence the topology of manifolds with positive sectional curvature. This is a somewhat more recent line of inquiry.
15#
發(fā)表于 2025-3-24 02:30:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:19:02 | 只看該作者
Derivatives,This chapter introduces several important notions of derivatives of tensors. In chapters 5 and 6 we also introduce partial derivatives of functions into Riemannian manifolds.
17#
發(fā)表于 2025-3-24 14:25:25 | 只看該作者
Convergence,In this chapter we offer an introduction to several of the convergence ideas for Riemannian manifolds.
18#
發(fā)表于 2025-3-24 17:00:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:15 | 只看該作者
Peter PetersenIncludes a substantial addition of unique and enriching exercises.Exists as one of the few Works to combine both the geometric parts of Riemannian geometry and analytic aspects of the theory.Presents
20#
發(fā)表于 2025-3-25 02:51:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新竹县| 新营市| 达拉特旗| 江西省| 信宜市| 镇雄县| 黔西| 海口市| 始兴县| 公主岭市| 平陆县| 台南县| 城口县| 阿拉尔市| 临洮县| 阜城县| 都江堰市| 扎兰屯市| 合川市| 桐乡市| 吴旗县| 宜城市| 阳曲县| 河池市| 南汇区| 吉木乃县| 宜宾县| 大宁县| 安岳县| 新和县| 岗巴县| 浙江省| 五华县| 元江| 遵义市| 白山市| 武隆县| 武鸣县| 叶城县| 安仁县| 濉溪县|