找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry; Sylvestre Gallot,Dominique Hulin,Jacques Lafontain Textbook 19902nd edition Springer-Verlag Berlin Heidelberg 1990 Mi

[復(fù)制鏈接]
樓主: 銀河
11#
發(fā)表于 2025-3-23 11:43:52 | 只看該作者
Riemannian Submanifolds,In this chapter, we study the relations between the Riemannian Geometry of a submanifold and that of the ambiant space. It is well known that surfaces of the Euclidean space were the first examples of Riemannian manifolds to be studied. In fact, the first truly Riemannian geometry result is due to Gauss, and roughly says the following.
12#
發(fā)表于 2025-3-23 16:24:40 | 只看該作者
Universitexthttp://image.papertrans.cn/r/image/830304.jpg
13#
發(fā)表于 2025-3-23 20:43:59 | 只看該作者
https://doi.org/10.1007/978-3-642-97242-3Minimal surface; Riemannian geometry; Riemannian goemetry; covariant derivative; curvature; manifold; rela
14#
發(fā)表于 2025-3-24 00:00:15 | 只看該作者
0172-5939 surfaces. Here we begin directly with the so-called "abstract" manifolds. To illustrate our point of view, a series of examples is developed each time a new def978-3-642-97242-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
15#
發(fā)表于 2025-3-24 04:40:09 | 只看該作者
16#
發(fā)表于 2025-3-24 08:23:16 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontainee stable under acid hydrolysis.. In the course of our effort to isolate a digitalis-like subtances in rat urine with inhibition of ouabain-sensitive Na.,K.-ATPase as a marker, we found a low molecular weight (ultarfiltrable through Amicon YC05) substance which inhibited Na.,K.-ATPase was stable to a
17#
發(fā)表于 2025-3-24 11:55:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:25 | 只看該作者
er, its application in guanidine synthesis has also been proved. Examples of the preparation of guanidines using cyanamides that react with derivatised amines as well as the use of copper-catalysed cross-coupling chemistry are also presented. Moreover, cyclic guanidines such as 2-aminoimidazolines (
20#
發(fā)表于 2025-3-24 23:48:54 | 只看該作者
Sylvestre Gallot,Dominique Hulin,Jacques Lafontaine
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涟水县| 合川市| 楚雄市| 梁平县| 会理县| 丹江口市| 如东县| 丰原市| 石泉县| 剑阁县| 永泰县| 古浪县| 井冈山市| 金秀| 东乌珠穆沁旗| 略阳县| 文成县| 邛崃市| 西青区| 西平县| 岗巴县| 道真| 穆棱市| 古田县| 泸定县| 台北县| 磐安县| 桂平市| 东乡族自治县| 偃师市| 扬中市| 新建县| 苏尼特右旗| 南丹县| 兴仁县| 丹凤县| 铜梁县| 禹州市| 铜鼓县| 福建省| 商都县|