找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Foliations; Pierre Molino Book 1988 Springer Science+Business Media New York 1988 Division.Finite.Isometrie.Partition.Riemannia

[復(fù)制鏈接]
查看: 46273|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:19:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Riemannian Foliations
編輯Pierre Molino
視頻videohttp://file.papertrans.cn/831/830303/830303.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Riemannian Foliations;  Pierre Molino Book 1988 Springer Science+Business Media New York 1988 Division.Finite.Isometrie.Partition.Riemannia
描述Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par- tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver- 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di- L..... -‘ _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia- tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometime
出版日期Book 1988
關(guān)鍵詞Division; Finite; Isometrie; Partition; Riemannian geometry; Vector field; differential equation; equation;
版次1
doihttps://doi.org/10.1007/978-1-4684-8670-4
isbn_softcover978-1-4684-8672-8
isbn_ebook978-1-4684-8670-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1988
The information of publication is updating

書目名稱Riemannian Foliations影響因子(影響力)




書目名稱Riemannian Foliations影響因子(影響力)學(xué)科排名




書目名稱Riemannian Foliations網(wǎng)絡(luò)公開度




書目名稱Riemannian Foliations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Riemannian Foliations被引頻次




書目名稱Riemannian Foliations被引頻次學(xué)科排名




書目名稱Riemannian Foliations年度引用




書目名稱Riemannian Foliations年度引用學(xué)科排名




書目名稱Riemannian Foliations讀者反饋




書目名稱Riemannian Foliations讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:02:06 | 只看該作者
gefunden. Sogar in sprichw?rtlichen Redewendungen sind seine Bestandteile pr?sent: ?Das ist ja hanebüchen“ leitet sich von der Hainbuche ab, die ein recht stabiles Holz entwickelt, und wenn jemand knallharten Unsinn redet, ist dieses spezielle Attribut auf jeden Fall angesagt. Der Wald berührt viele
板凳
發(fā)表于 2025-3-22 03:23:07 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:09 | 只看該作者
5#
發(fā)表于 2025-3-22 11:30:39 | 只看該作者
Book 1988e of folia- tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometime
6#
發(fā)表于 2025-3-22 16:15:01 | 只看該作者
0743-1643 n appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometime978-1-4684-8672-8978-1-4684-8670-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
7#
發(fā)表于 2025-3-22 18:37:48 | 只看該作者
Basic Properties of Riemannian Foliations,We begin be recalling some basic results on Riemannian geometry ; for the proofs, the reader is referred to Kobayashi-Nomizu [Ko-No] or Dieudonné [Di], for example.
8#
發(fā)表于 2025-3-23 00:02:08 | 只看該作者
The Structure of Riemannian Foliations,In this chapter we return to Riemannian foliations on compact manifolds. The results of the previous chapters enable us to describe the lifted foliation in the orthonormal transverse frame bundle. It then remains to drop down to the base by taking the quotient by the action of the structure group.
9#
發(fā)表于 2025-3-23 03:25:16 | 只看該作者
10#
發(fā)表于 2025-3-23 09:02:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 凤城市| 神农架林区| 武鸣县| 宾川县| 临泉县| 类乌齐县| 同心县| 中超| 临澧县| 罗源县| 南岸区| 民勤县| 台山市| 奉节县| 泰安市| 敖汉旗| 武功县| 河源市| 山阳县| 白沙| 石棉县| 泰顺县| 临朐县| 五大连池市| 沐川县| 滨海县| 无极县| 桐柏县| 柳江县| 孝感市| 塔河县| 新泰市| 象山县| 莫力| 桐城市| 连平县| 崇仁县| 辰溪县| 平昌县| 三台县|