找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemann Surfaces and Generalized Theta Functions; Robert C. Gunning Book 1976 Springer-Verlag Berlin Heidelberg 1976 Division.Equivalence.

[復制鏈接]
樓主: 頻率
11#
發(fā)表于 2025-3-23 12:46:41 | 只看該作者
Book 1976nected Riemann surface M of genus g is realized by an irreducible (g -1)-dimensional analytic subvariety, an irreducible hypersurface, of the associated g-dimensional complex torus J(M); this hyper- 1 surface W- r;;;, J(M) is the image of the natural mapping Mg- -+J(M), and is g 1 1 birationally equ
12#
發(fā)表于 2025-3-23 15:19:53 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:06 | 只看該作者
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folgehttp://image.papertrans.cn/r/image/830297.jpg
14#
發(fā)表于 2025-3-23 23:26:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:49:37 | 只看該作者
978-3-642-66384-0Springer-Verlag Berlin Heidelberg 1976
16#
發(fā)表于 2025-3-24 06:37:46 | 只看該作者
Complex Manifolds and Vector Bundles,et of the .-dimensional number space ?.. A . {., .} of such a manifold . consists of a covering of . by open subsets . together with homeomorphisms .:.→. between the sets . and open subsets .??.; the sets . are called . and the mappings . are called .. A topological manifold of course always admits
17#
發(fā)表于 2025-3-24 12:25:33 | 只看該作者
Riemann Surfaces,me familiarity with the topology of surfaces will be presupposed; so it can be taken as known that topologically . is a sphere with . handles, where the integer . is called the genus of the surface. The surface M can then be dissected into a contractible set by cutting along 2. paths which issue fro
18#
發(fā)表于 2025-3-24 15:01:21 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:43 | 只看該作者
Book 1976long been basic to the study both of Riemann surfaces and of complex tori. A Riemann surface is naturally imbedded as an analytic submanifold in its associated torus; and various spaces of linear equivalence elasses of divisors on the surface (or equivalently spaces of analytic equivalence elasses o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宜阳县| 石河子市| 平凉市| 临朐县| 北海市| 宜黄县| 沙田区| 阿拉善盟| 惠东县| 阿克苏市| 固阳县| 文昌市| 新平| 浦江县| 溧水县| 淅川县| 合阳县| 图木舒克市| 东海县| 平阳县| 长海县| 朝阳区| 长阳| 四会市| 乐清市| 巴楚县| 灵璧县| 舟曲县| 济宁市| 龙海市| 唐海县| 康马县| 肥西县| 开远市| 宜阳县| 玛沁县| 平潭县| 万宁市| 韩城市| 稷山县| 舞阳县|