找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemann Surfaces; Hershel M. Farkas,Irwin Kra Textbook 19801st edition Springer Science+Business Media New York 1980 Abelian variety.Divis

[復制鏈接]
查看: 35656|回復: 46
樓主
發(fā)表于 2025-3-21 16:10:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemann Surfaces
編輯Hershel M. Farkas,Irwin Kra
視頻videohttp://file.papertrans.cn/831/830296/830296.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Riemann Surfaces;  Hershel M. Farkas,Irwin Kra Textbook 19801st edition Springer Science+Business Media New York 1980 Abelian variety.Divis
描述The present volume is the culmination often years‘ work separately and joint- ly. The idea of writing this book began with a set of notes for a course given by one of the authors in 1970-1971 at the Hebrew University. The notes were refined serveral times and used as the basic content of courses given sub- sequently by each of the authors at the State University of New York at Stony Brook and the Hebrew University. In this book we present the theory of Riemann surfaces and its many dif- ferent facets. We begin from the most elementary aspects and try to bring the reader up to the frontier of present-day research. We treat both open and closed surfaces in this book, but our main emphasis is on the compact case. In fact, Chapters III, V, VI, and VII deal exclusively with compact surfaces. Chapters I and II are preparatory, and Chapter IV deals with uniformization. All works on Riemann surfaces go back to the fundamental results of Rie- mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition to our debt to these mathematicians of a previous era, the present work has been influenced by many contemporary mathematicians.
出版日期Textbook 19801st edition
關(guān)鍵詞Abelian variety; Divisor; Hilbert space; Jacobi; Riemann surface; Riemannsche Fl?che; Surfaces; Volume; addi
版次1
doihttps://doi.org/10.1007/978-1-4684-9930-8
isbn_ebook978-1-4684-9930-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1980
The information of publication is updating

書目名稱Riemann Surfaces影響因子(影響力)




書目名稱Riemann Surfaces影響因子(影響力)學科排名




書目名稱Riemann Surfaces網(wǎng)絡公開度




書目名稱Riemann Surfaces網(wǎng)絡公開度學科排名




書目名稱Riemann Surfaces被引頻次




書目名稱Riemann Surfaces被引頻次學科排名




書目名稱Riemann Surfaces年度引用




書目名稱Riemann Surfaces年度引用學科排名




書目名稱Riemann Surfaces讀者反饋




書目名稱Riemann Surfaces讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:19 | 只看該作者
Existence Theorems,nt meromorphic functions. We do so by constructing certain harmonic differentials (with singularities). From the existence of harmonic differentials, it is trivial to construct meromorphic differentials. A ratio of two linearly independent meromorphic differentials produces a non-constant meromorphic function.
板凳
發(fā)表于 2025-3-22 04:12:05 | 只看該作者
Compact Riemann Surfaces,important theorems concerning compact Riemann surfaces : the RiemannRoch theorem, Abel’s theorem, and the Jacobi inversion theorem. Many applications of these theorems are obtained; and the simplest compact Riemann surfaces, the hyperelliptic ones, are discussed in great detail.
地板
發(fā)表于 2025-3-22 07:12:07 | 只看該作者
Theta Functions, the Jacobian variety of a compact surface, and via the embedding of the Riemann surface into its Jacobian variety, multivalued holomorphic functions on the surface. The high point of our present development is the Riemann vanishing theorem (Theorem VI.3.5). Along the way, we will reprove the Jacobi inversion theorem.
5#
發(fā)表于 2025-3-22 12:17:34 | 只看該作者
6#
發(fā)表于 2025-3-22 14:49:39 | 只看該作者
Riemann Surfaces978-1-4684-9930-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
7#
發(fā)表于 2025-3-22 18:36:34 | 只看該作者
Uniformization,This chapter has two purposes. The first and by far the most important is to prove the uniformization theorem for Riemann surfaces. This theorem describes all simply connected Riemann surfaces and hence with the help of topology, all Riemann surfaces.
8#
發(fā)表于 2025-3-22 22:59:13 | 只看該作者
,Automorphisms of Compact Surfaces — Elementary Theory,In this chapter we develop the basic results on the automorphism group of a compact Riemann surface, continuing the study began in III.7. Some of the deeper results will have to await the creation of more powerful machinery.
9#
發(fā)表于 2025-3-23 03:42:43 | 只看該作者
10#
發(fā)表于 2025-3-23 07:27:47 | 只看該作者
https://doi.org/10.1007/978-1-4684-9930-8Abelian variety; Divisor; Hilbert space; Jacobi; Riemann surface; Riemannsche Fl?che; Surfaces; Volume; addi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
星子县| 奉节县| 鄄城县| 鲁山县| 博白县| 林周县| 溧阳市| 红河县| 延津县| 文昌市| 碌曲县| 临夏县| 遵化市| 乳山市| 和顺县| 永登县| 东方市| 莱芜市| 望都县| 泾源县| 岳池县| 淮滨县| 临城县| 化州市| 泽普县| 梁山县| 吉隆县| 高碑店市| 台中市| 竹溪县| 祁阳县| 垫江县| 增城市| 芒康县| 夏河县| 五莲县| 阿拉善右旗| 冕宁县| 伊川县| 黔东| 浙江省|