找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemann Solvers and Numerical Methods for Fluid Dynamics; A Practical Introduc Eleuterio F. Toro Book 19992nd edition Springer-Verlag Berli

[復(fù)制鏈接]
樓主: aggression
31#
發(fā)表于 2025-3-26 21:26:17 | 只看該作者
Approximate-State Riemann Solvers,nov—type methods: one approach is to find an . employed in the numerical method, directly, see Chaps. 10, 11 and 12; the other approach is to find an . and then evaluate the physical flux function at this state. It is the latter route the one we follow in this chapter.
32#
發(fā)表于 2025-3-27 02:08:28 | 只看該作者
The HLL and HLLC Riemann Solvers,ent and robust approximate Godunov—type methods. One difficulty with these schemes, however, is the assumption of a two—wave configuration. This is correct only for hyperbolic systems of two equations, such as the one—dimensional shallow water equations. For larger systems, such as the Euler equatio
33#
發(fā)表于 2025-3-27 07:24:29 | 只看該作者
The Riemann Solver of Roe,nsiderable period of time has led to various improvements of the scheme. As originally presented the Roe scheme computes rarefaction shocks, thus violating the entropy condition. Harten and Hyman [163], Roe and Pike [290], Roe [288], Dubois and Mehlman [113] and others, have produced appropriate mod
34#
發(fā)表于 2025-3-27 13:19:21 | 只看該作者
The Riemann Solver of Osher,lowly—moving shock waves; see Roberts [280], Billett and Toro [40] and Arora and Roe [13]. The scheme is closely related to the Flux Vector Splitting approach described in Chap. 8 and, as Godunov’s method of Chap. 6, it is a generalisation of the CIR scheme described in Chap. 5 for linear hyperbolic
35#
發(fā)表于 2025-3-27 16:45:37 | 只看該作者
High-Order and TVD Schemes for Non-Linear Systems,Chap. 3. Applications to other systems may be easily accomplished. Techniques for extending the methods to systems with source terms, as for reactive flows for instance, are given in Chap. 15 and to multidimensional systems in Chap. 16.
36#
發(fā)表于 2025-3-27 18:48:05 | 只看該作者
37#
發(fā)表于 2025-3-27 23:08:47 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:41 | 只看該作者
Riemann Solvers and Numerical Methods for Fluid Dynamics978-3-662-03915-1
39#
發(fā)表于 2025-3-28 07:41:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:37:03 | 只看該作者
http://image.papertrans.cn/r/image/830292.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峨县| 临高县| 呈贡县| 景东| 鄯善县| 来宾市| 泌阳县| 辉县市| 浙江省| 渑池县| 克拉玛依市| 博爱县| 北宁市| 深泽县| 尼木县| 固镇县| 顺义区| 重庆市| 松原市| 洪雅县| 肇州县| 沙雅县| 靖江市| 英超| 临朐县| 平山县| 平南县| 辛集市| 来凤县| 蒙自县| 健康| 清水河县| 亚东县| 三都| 黑山县| 兴城市| 湖南省| 都昌县| 内江市| 纳雍县| 临夏市|