找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ridges in Image and Data Analysis; David Eberly Book 1996 Springer Science+Business Media Dordrecht 1996 Riemannian geometry.computer visi

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 09:46:12 | 只看該作者
Book 1996a concrete definition is provided. In almost all cases the concept is used for very specific ap- plications. When analyzing images or data sets, it is very natural for a scientist to measure critical behavior by considering maxima or minima of the data. These critical points are relatively easy to c
12#
發(fā)表于 2025-3-23 15:41:47 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:49:20 | 只看該作者
Ridges in Riemannian Geometry,or is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian geometry requires tensor calculus which is discussed in Section 2.3. Most notably the constructions involve the ideas of covariant and contravariant tensors and of covariant differentiation.
15#
發(fā)表于 2025-3-24 04:14:28 | 只看該作者
Ridges of Functions Defined on Manifolds,d—dimensional ridges of a function defined on an n—dimensional manifold embedded in IR.. Section 5.2 provides an alternative definition for ridges based on principal curvatures and principal directions. Section 5.3 discusses a ridge definition which is an application of the definition of Section 5.2 to level sets.
16#
發(fā)表于 2025-3-24 09:51:04 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:40 | 只看該作者
Ridges in Euclidean Geometry,for maximality of .(.) is made in a restricted neighborhood of .. A similar concept of . generalizes local minima, but since local minima of . are local maxima of —., it is sufficient to study only the concept of ridge.
18#
發(fā)表于 2025-3-24 15:22:33 | 只看該作者
Ridges in Riemannian Geometry, is the set of .-tuples of real numbers. An implicit assumption was made that ?., as a geometric entity, is standard Euclidean space whose metric tensor is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian g
19#
發(fā)表于 2025-3-24 20:10:51 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 20:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
美姑县| 平远县| 芷江| 湘西| 天台县| 高邮市| 封丘县| 确山县| 新竹县| 松阳县| 改则县| 扎兰屯市| 根河市| 台山市| 文山县| 马鞍山市| 平武县| 深水埗区| 长丰县| 浏阳市| 象州县| 巴塘县| 崇阳县| 天柱县| 博乐市| 南宫市| 正镶白旗| 普兰店市| 铜鼓县| 鹿邑县| 龙山县| 德庆县| 文成县| 乐平市| 上虞市| 隆化县| 凉山| 开江县| 浏阳市| 九江县| 罗城|