找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ridges in Image and Data Analysis; David Eberly Book 1996 Springer Science+Business Media Dordrecht 1996 Riemannian geometry.computer visi

[復制鏈接]
樓主: 風俗習慣
11#
發(fā)表于 2025-3-23 09:46:12 | 只看該作者
Book 1996a concrete definition is provided. In almost all cases the concept is used for very specific ap- plications. When analyzing images or data sets, it is very natural for a scientist to measure critical behavior by considering maxima or minima of the data. These critical points are relatively easy to c
12#
發(fā)表于 2025-3-23 15:41:47 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:49:20 | 只看該作者
Ridges in Riemannian Geometry,or is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian geometry requires tensor calculus which is discussed in Section 2.3. Most notably the constructions involve the ideas of covariant and contravariant tensors and of covariant differentiation.
15#
發(fā)表于 2025-3-24 04:14:28 | 只看該作者
Ridges of Functions Defined on Manifolds,d—dimensional ridges of a function defined on an n—dimensional manifold embedded in IR.. Section 5.2 provides an alternative definition for ridges based on principal curvatures and principal directions. Section 5.3 discusses a ridge definition which is an application of the definition of Section 5.2 to level sets.
16#
發(fā)表于 2025-3-24 09:51:04 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:40 | 只看該作者
Ridges in Euclidean Geometry,for maximality of .(.) is made in a restricted neighborhood of .. A similar concept of . generalizes local minima, but since local minima of . are local maxima of —., it is sufficient to study only the concept of ridge.
18#
發(fā)表于 2025-3-24 15:22:33 | 只看該作者
Ridges in Riemannian Geometry, is the set of .-tuples of real numbers. An implicit assumption was made that ?., as a geometric entity, is standard Euclidean space whose metric tensor is the identity. The same concepts are definable even if ?. is assigned an arbitrary positive definite metric tensor. The extension to Riemannian g
19#
發(fā)表于 2025-3-24 20:10:51 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
喜德县| 营口市| 海阳市| 邵阳市| 清苑县| 济宁市| 兰考县| 乌拉特前旗| 革吉县| 登封市| 永城市| 江城| 阳春市| 怀来县| 册亨县| 五峰| 平乐县| 皮山县| 获嘉县| 池州市| 光山县| 临沭县| 淳化县| 乌鲁木齐县| 拜城县| 宜宾市| 凤翔县| 星子县| 涿州市| 磐石市| 特克斯县| 巩留县| 遂溪县| 昆山市| 堆龙德庆县| 龙南县| 澄城县| 延庆县| 双牌县| 手机| 高唐县|