找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ricci-Calculus; An Introduction to T J. A. Schouten Book 1954 Springer-Verlag Berlin Heidelberg 1954 Derivative.Lie.algebra.calculus.curvat

[復(fù)制鏈接]
樓主: expenditure
11#
發(fā)表于 2025-3-23 13:11:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:06:11 | 只看該作者
Miscellaneous examples,Let .. be rectilinear coordinates in an ordinary ... Then the distance . of an arbitrary point .. from the origin is .and by differentiation we get
13#
發(fā)表于 2025-3-23 20:57:20 | 只看該作者
14#
發(fā)表于 2025-3-24 00:10:14 | 只看該作者
Book 1954STRUIK published a new book, their Einführung I and li, and this book not only gave the first systematic introduction to the kernel- index method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal
15#
發(fā)表于 2025-3-24 06:17:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:33:43 | 只看該作者
Linear connexions, rectilinear coordinate system, .. and ?... are a vector and a tensor because if (.′) is another rectilinear system, the .. are constants. .. is the difference between the vector .... at .... and a vector with the components .. at the same point. This latter vector can be derived from the vector ..
17#
發(fā)表于 2025-3-24 12:48:47 | 只看該作者
Variations and deformations,etrical objects suffer a finite or infinitesimal transformation and the behaviour of some other objects depending on them is required. In deformation problems we deal with the special case where the variation is due to displacements of some kind, for instance a dragging along or a parallel displacem
18#
發(fā)表于 2025-3-24 15:11:50 | 只看該作者
Variations and deformations,ent. The case occurring most frequently is that some objects are left at rest, others are dragged along and others are displaced parallel. The theory of variation and deformation is very important because a great number of problems in differential geometry can be treated in a very elegant way by using the methods of this theory.
19#
發(fā)表于 2025-3-24 20:45:45 | 只看該作者
20#
發(fā)表于 2025-3-25 03:09:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香格里拉县| 彭山县| 武安市| 廉江市| 吉木乃县| 黑河市| 班玛县| 平潭县| 上虞市| 石楼县| 前郭尔| 三门峡市| 昌图县| 英吉沙县| 清新县| 阜平县| 樟树市| 安阳县| 福泉市| 容城县| 明星| 广宗县| 庆元县| 藁城市| 肥城市| 上杭县| 十堰市| 南平市| 张家港市| 瓦房店市| 定日县| 冕宁县| 岗巴县| 鹿邑县| 通道| 滕州市| 长沙市| 丰镇市| 哈密市| 进贤县| 卓尼县|