找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ricci Flow for Shape Analysis and Surface Registration; Theories, Algorithms Wei Zeng,Xianfeng David Gu Book 2013 Wei Zeng, Xianfeng David

[復(fù)制鏈接]
查看: 10912|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:25:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ricci Flow for Shape Analysis and Surface Registration
副標(biāo)題Theories, Algorithms
編輯Wei Zeng,Xianfeng David Gu
視頻videohttp://file.papertrans.cn/831/830185/830185.mp4
概述Presents Ricci flow analysis in a simplified discrete setting.Illustrates applications from engineering and medicine that represent state-of-the-art and new exciting challenges.Written by experts in t
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Ricci Flow for Shape Analysis and Surface Registration; Theories, Algorithms Wei Zeng,Xianfeng David Gu Book 2013 Wei Zeng, Xianfeng David
描述?Ricci Flow for Shape Analysis and Surface Registration introduces the beautiful and profound Ricci flow theory in a discrete setting. By using basic tools in linear algebra and multivariate calculus, readers can deduce all the major theorems in surface??Ricci flow by themselves. The authors adapt?the?Ricci flow theory to practical computational algorithms, apply Ricci flow for shape analysis and surface registration, and demonstrate the power of Ricci flow in many applications in medical imaging, computer graphics, computer vision and wireless sensor network. Due to minimal pre-requisites, this book?is accessible to?engineers?and medical?experts, including educators, researchers, students and industry engineers?who?have an interest in?solving?real problems related to shape analysis and surface registration. ?
出版日期Book 2013
關(guān)鍵詞Diffeomorphism; Poincaré’s Conjecture; QuasiConformal; Ricci Flow; Surface Registration; Uniformization
版次1
doihttps://doi.org/10.1007/978-1-4614-8781-4
isbn_softcover978-1-4614-8780-7
isbn_ebook978-1-4614-8781-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightWei Zeng, Xianfeng David Gu 2013
The information of publication is updating

書目名稱Ricci Flow for Shape Analysis and Surface Registration影響因子(影響力)




書目名稱Ricci Flow for Shape Analysis and Surface Registration影響因子(影響力)學(xué)科排名




書目名稱Ricci Flow for Shape Analysis and Surface Registration網(wǎng)絡(luò)公開度




書目名稱Ricci Flow for Shape Analysis and Surface Registration網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ricci Flow for Shape Analysis and Surface Registration被引頻次




書目名稱Ricci Flow for Shape Analysis and Surface Registration被引頻次學(xué)科排名




書目名稱Ricci Flow for Shape Analysis and Surface Registration年度引用




書目名稱Ricci Flow for Shape Analysis and Surface Registration年度引用學(xué)科排名




書目名稱Ricci Flow for Shape Analysis and Surface Registration讀者反饋




書目名稱Ricci Flow for Shape Analysis and Surface Registration讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:33 | 只看該作者
Riemann Surface,Riemann surface theory studies the invariants under conformal transformation group. This chapter briefly introduces the Riemann surface theory [7], including quasi-conformal mapping [1], Teichmüller space [3, 12], and surface harmonic maps [10, 11]. Finally, the Teichmüller theory of harmonic maps [13] is covered.
板凳
發(fā)表于 2025-3-22 02:09:29 | 只看該作者
地板
發(fā)表于 2025-3-22 06:56:57 | 只看該作者
5#
發(fā)表于 2025-3-22 08:59:57 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/r/image/830185.jpg
6#
發(fā)表于 2025-3-22 16:07:21 | 只看該作者
https://doi.org/10.1007/978-1-4614-8781-4Diffeomorphism; Poincaré’s Conjecture; QuasiConformal; Ricci Flow; Surface Registration; Uniformization
7#
發(fā)表于 2025-3-22 19:50:34 | 只看該作者
Introduction,rphisms, isometries, conformal transformations, and rigid motions) and group actions on shape spaces. In order to perform surface registration and shape analysis in the shape space and the mapping space, Ricci flow is introduced, which leads to the celebrated uniformization theorem.
8#
發(fā)表于 2025-3-23 01:10:46 | 只看該作者
978-1-4614-8780-7Wei Zeng, Xianfeng David Gu 2013
9#
發(fā)表于 2025-3-23 04:01:37 | 只看該作者
Ricci Flow for Shape Analysis and Surface Registration978-1-4614-8781-4Series ISSN 2191-8198 Series E-ISSN 2191-8201
10#
發(fā)表于 2025-3-23 06:30:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山阳县| 衡南县| 仪陇县| 南溪县| 博爱县| 米泉市| 雷波县| 安义县| 安乡县| 新竹市| 绥化市| 瑞金市| 西华县| 荥阳市| 绥阳县| 科尔| 柯坪县| 枣强县| 枣庄市| 定襄县| 双辽市| 桓仁| 宁国市| 根河市| 姚安县| 威海市| 北票市| 河西区| 兴文县| 临西县| 北流市| 乐清市| 高州市| 壶关县| 革吉县| 航空| 江源县| 依兰县| 纳雍县| 威信县| 离岛区|