找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ricci Flow and Geometric Applications; Cetraro, Italy 2010 Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be Book 2016 Springer Internati

[復制鏈接]
查看: 42168|回復: 35
樓主
發(fā)表于 2025-3-21 17:03:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ricci Flow and Geometric Applications
副標題Cetraro, Italy 2010
編輯Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be
視頻videohttp://file.papertrans.cn/831/830184/830184.mp4
概述Offers a basic introduction to the subjects.Gives detailed and careful explanations of the topics.Presents four different and very important aspects of the applications of Ricci flow.Includes suppleme
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Ricci Flow and Geometric Applications; Cetraro, Italy  2010 Michel Boileau,Gerard Besson,Gang Tian,Riccardo Be Book 2016 Springer Internati
描述.Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them.?..The book’s four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and K?hler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds..
出版日期Book 2016
關(guān)鍵詞53C44, 57M50, 57M40; Ricci flow; Manifolds; Geometrization; Poincare‘ conjecture; Ricci tensor; Kahler-Ric
版次1
doihttps://doi.org/10.1007/978-3-319-42351-7
isbn_softcover978-3-319-42350-0
isbn_ebook978-3-319-42351-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Ricci Flow and Geometric Applications影響因子(影響力)




書目名稱Ricci Flow and Geometric Applications影響因子(影響力)學科排名




書目名稱Ricci Flow and Geometric Applications網(wǎng)絡公開度




書目名稱Ricci Flow and Geometric Applications網(wǎng)絡公開度學科排名




書目名稱Ricci Flow and Geometric Applications被引頻次




書目名稱Ricci Flow and Geometric Applications被引頻次學科排名




書目名稱Ricci Flow and Geometric Applications年度引用




書目名稱Ricci Flow and Geometric Applications年度引用學科排名




書目名稱Ricci Flow and Geometric Applications讀者反饋




書目名稱Ricci Flow and Geometric Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:45 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:47:44 | 只看該作者
The Differentiable Sphere Theorem (After S. Brendle and R. Schoen),chnique developed by C.?B?hm and B.?Wilking who obtained the same conclusion assuming that the manifold has positive curvature operator. The maximum principle applied to the Ricci flow equation leads to studying an ordinary differential equation on the space of curvature operators.
地板
發(fā)表于 2025-3-22 08:09:40 | 只看該作者
Thick/Thin Decomposition of Three-Manifolds and the Geometrisation Conjecture,etrisation conjecture. The material is largely based on the monographs (Bessière et?al., EMS Tracts Math 13, 2010) and (Boileau et?al., Monographie, Panorama et Synthèse 15:167 pp, 2003). The author wants to thank the organizers of the CIME Summer School in Cetraro 2010 for their patience whilst these notes were completed.
5#
發(fā)表于 2025-3-22 11:27:32 | 只看該作者
Singularities of Three-Dimensional Ricci Flows,of of the differentiable sphere theorem. In these notes we provide an introduction to the Ricci flow, by giving a survey of the basic results and examples. In particular, we focus our attention on the analysis of the singularities of the flow in the three-dimensional case which is needed in the surgery construction by Hamilton and Perelman.
6#
發(fā)表于 2025-3-22 14:31:08 | 只看該作者
Book 2016here theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and K?hler–Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds..
7#
發(fā)表于 2025-3-22 20:55:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:31:50 | 只看該作者
Thick/Thin Decomposition of Three-Manifolds and the Geometrisation Conjecture,ere, but mainly to emphasize geometric properties of 3-manifolds and to illustrate some basic ideas or methods underlying Perelman’s proof of the geometrisation conjecture. The material is largely based on the monographs (Bessière et?al., EMS Tracts Math 13, 2010) and (Boileau et?al., Monographie, P
9#
發(fā)表于 2025-3-23 03:08:15 | 只看該作者
10#
發(fā)表于 2025-3-23 08:30:04 | 只看該作者
artengesch?fts eine signifikant h?here Komplexit?t aufweist. Dies wiederum und die Tatsache fehlender Liberalisierungen sowie Harmonisierungen birgt erhebliche Ineffizienzen entlang der Wertsch?pfungskette des Kartengesch?fts, die sich sowohl in den Prozessen des kartenbasierten Zahlungsverkehrs als
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
海南省| 隆化县| 秭归县| 达州市| 益阳市| 吉水县| 临澧县| 杭锦后旗| 吴堡县| 海林市| 巴中市| 筠连县| 织金县| 浮梁县| 石河子市| 海林市| 榆中县| 三亚市| 卢龙县| 阳江市| 奉新县| 股票| 陆丰市| 沿河| 石渠县| 霍林郭勒市| 喀什市| 鹤峰县| 仙游县| 南召县| 获嘉县| 方山县| 资源县| 吉木乃县| 蓬莱市| 伊宁市| 扎兰屯市| 富川| 桃园县| 高平市| 青冈县|