找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rheology of Drag Reducing Fluids; Aroon Shenoy Book 2020 Springer Nature Switzerland AG 2020 Drag Reducing Fluids.Drag Reducing Agents.Bou

[復(fù)制鏈接]
樓主: Concave
11#
發(fā)表于 2025-3-23 10:49:25 | 只看該作者
Velocity Profiles and Friction Factors in Turbulent Pipe Flows,r ducts are also treated in this chapter. Not all pipes are smooth, and in reality, they have a certain level of surface defects marked by protrusions or indentations. Expression for fully developed velocity profiles in rough straight circular pipes is presented as well.
12#
發(fā)表于 2025-3-23 17:41:17 | 只看該作者
Drag Reducing Agents: A Historical Perspective,and surfactants. It reviews past work on this subject and provides a historical perspective about this phenomenon. The chapter also discusses the proposed theories of drag reduction indicating how the extent of drag reduction lies between the Blasius line and the maximum drag reduction asymptote. An
13#
發(fā)表于 2025-3-23 21:46:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:48:13 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:55 | 只看該作者
Turbulent Forced and Mixed Convection Heat Transfer in Internal Flows, well estimated without solving the energy equation using momentum/heat transfer analogies. Expressions for the local Stanton numbers are derived for external flow (vertical pipes) and internal flow (circular pipes) using the analogy. An approximate theoretical analysis of the effect of buoyancy on
16#
發(fā)表于 2025-3-24 09:43:07 | 只看該作者
Natural, Forced, and Mixed Convection Heat Transfer in External Flows Through Porous Media,plate embedded in a porous medium. The final form of the equation for mixed convection is like those of the correlating equations for combined laminar forced and free convection heat transfer for Newtonian fluids and for non- Newtonian fluids in homogeneous media. Such equations which interpolate th
17#
發(fā)表于 2025-3-24 14:30:57 | 只看該作者
18#
發(fā)表于 2025-3-24 18:44:36 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:41 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仲巴县| 秦皇岛市| 京山县| 庆安县| 九龙城区| 保定市| 江山市| 犍为县| 佛学| 兰州市| 遂川县| 子长县| 北宁市| 岱山县| 大理市| 罗山县| 尼木县| 海口市| 常山县| 墨脱县| 鸡泽县| 江油市| 滁州市| 革吉县| 鄂托克旗| 武邑县| 招远市| 清水县| 太和县| 鄄城县| 芜湖市| 永新县| 隆安县| 龙胜| 扎赉特旗| 新乡县| 竹溪县| 天峨县| 石棉县| 永福县| 万州区|