找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; Dijon, France, May 2 Jean-Pierre Jouannaud Conference proceedings 1985 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
查看: 45639|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:47:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Rewriting Techniques and Applications
副標(biāo)題Dijon, France, May 2
編輯Jean-Pierre Jouannaud
視頻videohttp://file.papertrans.cn/830/829956/829956.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Rewriting Techniques and Applications; Dijon, France, May 2 Jean-Pierre Jouannaud Conference proceedings 1985 Springer-Verlag Berlin Heidel
出版日期Conference proceedings 1985
關(guān)鍵詞Applications; Monoid; algorithms; compiler; complexity; logic; petri net; theorem proving
版次1
doihttps://doi.org/10.1007/3-540-15976-2
isbn_softcover978-3-540-15976-6
isbn_ebook978-3-540-39679-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 1985
The information of publication is updating

書目名稱Rewriting Techniques and Applications影響因子(影響力)




書目名稱Rewriting Techniques and Applications影響因子(影響力)學(xué)科排名




書目名稱Rewriting Techniques and Applications網(wǎng)絡(luò)公開度




書目名稱Rewriting Techniques and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Rewriting Techniques and Applications被引頻次




書目名稱Rewriting Techniques and Applications被引頻次學(xué)科排名




書目名稱Rewriting Techniques and Applications年度引用




書目名稱Rewriting Techniques and Applications年度引用學(xué)科排名




書目名稱Rewriting Techniques and Applications讀者反饋




書目名稱Rewriting Techniques and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:26 | 只看該作者
Solving type equations by graph rewriting,bsumption" ordering were defined and shown to form a lattice structure. A simple "type-as-set" interpretation of these term structures extends this lattice to a distributive one, and in the case of finitary terms, to a complete Brouwerian lattice. As a result, a method for solving systems of type eq
板凳
發(fā)表于 2025-3-22 00:37:18 | 只看該作者
地板
發(fā)表于 2025-3-22 07:21:16 | 只看該作者
Associative path orderings,. to .-congruence classes, where . is an equational theory consisting of associativity and commutativity axioms. The associative path ordering is similar to another termination ordering for proving AC termination, described in Dershowitz, et al. (83), which is also based on the idea of .. Our orderi
5#
發(fā)表于 2025-3-22 09:01:24 | 只看該作者
Petrireve: Proving Petri net properties with rewriting systems,RIREVE. By establishing a link between the graphic Petri net design and simulation system PETRIPOTE and the term rewriting system generator REVE, PETRIREVE provides an environment for the design and verification of Petri nets. Representing Petri nets by rewriting systems allows easy and direct proof
6#
發(fā)表于 2025-3-22 15:29:19 | 只看該作者
7#
發(fā)表于 2025-3-22 21:07:51 | 只看該作者
8#
發(fā)表于 2025-3-22 23:21:24 | 只看該作者
An ideal-theoretic approach to word problems and unification problems over finitely presented commupresented commutative algebras. This approach is simpler and more efficient than the approaches based on generalizations of the Knuth-Bendix completion procedure to handle associative and commutative operators. It is shown that (i) the word problem over a finitely presented commutative ring with uni
9#
發(fā)表于 2025-3-23 01:28:48 | 只看該作者
Combining unification algorithms for confined regular equational theories, given one algorithm for unifying associative-commutative operators, and another for unifying commutative operators, our algorithm provides a method for unifying terms containing both kinds of operators. We restrict our attention to a class of equational theories which we call confined regular theor
10#
發(fā)表于 2025-3-23 05:39:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
葵青区| 永顺县| 龙川县| 绵竹市| 遵义县| 镇沅| 四会市| 广汉市| 南昌市| 娄烦县| 寻乌县| 同心县| 苍梧县| 凌源市| 杂多县| 渭南市| 黄冈市| 新巴尔虎右旗| 灵寿县| 彭山县| 舟山市| 天镇县| 商城县| 西贡区| 昌图县| 西峡县| 玉林市| 彝良县| 稷山县| 阿鲁科尔沁旗| 惠来县| 台安县| 高邮市| 资兴市| 德阳市| 璧山县| 黔南| 紫云| 涪陵区| 安龙县| 谷城县|