找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reviews of Environmental Contamination and Toxicology; Continuation of Resi George W. Ware Book 1994 Springer-Verlag New York, Inc. 1994 Re

[復(fù)制鏈接]
樓主: 債務(wù)人
11#
發(fā)表于 2025-3-23 11:23:23 | 只看該作者
e how the transition from fixed bed to bubbling bed, i.e. the so-called homogeneous expansion regime, is affected when surface energy is attributed to the particles. Then, using 3D simulations, we examine and provide visualisations of bubble formation, bubble rise and bubble splitting..In this chapt
12#
發(fā)表于 2025-3-23 14:50:14 | 只看該作者
Eric D. Park,Donald V. Lightner,Douglas L. Parkand each of three levels of analytic reduction of the Boltzmann equation: (i). an exact reduction to an equation in the speeds; (ii). an asymptotic reduction to a relatively simple one dimensional integrodifferential equation, and (iii). an asymptotic reduction of the latter to a simple transcendent
13#
發(fā)表于 2025-3-23 19:24:05 | 只看該作者
A. A. Mehargsults obtained for inelastic Maxwell models will be compared with the theoretical results derived for inelastic hard spheres using analytic approximate methods and the DSMC method. Finally, a surprising “nonequilibrium phase transition” for a sheared binary mixture in the tracer limit will be identi
14#
發(fā)表于 2025-3-24 00:39:27 | 只看該作者
David P. Barr,Steven D. Austnductivity coefficients can be identified. Determination of the non-Newtonian transport coefficients is done by following analytical and computational routes. Comparison between theoretical predictions and simulation results shows in general good agreement, even for conditions of strong inelasticity
15#
發(fā)表于 2025-3-24 05:45:13 | 只看該作者
Gerhard Hoerleiniven and randomly driven case. The velocity distribution in the randomly driven steady state exhibits a high energy tail ~ exp(-..), where c is the velocity scaled by the thermal velocity and . ~ 1/√∈with ∈ the inelasticity. The results are compared with molecular dynamics simulations, as well as di
16#
發(fā)表于 2025-3-24 08:37:38 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:30 | 只看該作者
18#
發(fā)表于 2025-3-24 18:50:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:00:54 | 只看該作者
20#
發(fā)表于 2025-3-25 02:58:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾川县| 佛山市| 吴堡县| 牡丹江市| 治县。| 和硕县| 离岛区| 儋州市| 泰安市| 塘沽区| 曲周县| 安福县| 祁连县| 武义县| 成都市| 扎赉特旗| 固原市| 金山区| 谷城县| 恭城| 化德县| 清流县| 清新县| 东光县| 绍兴市| 靖西县| 民和| 茂名市| 奉化市| 奉贤区| 信宜市| 滨海县| 尤溪县| 木兰县| 准格尔旗| 青州市| 许昌县| 凯里市| 环江| 平利县| 德格县|