找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reversible Computation; 14th International C Claudio Antares Mezzina,Krzysztof Podlaski Conference proceedings 2022 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 48538|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:10:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Reversible Computation
副標(biāo)題14th International C
編輯Claudio Antares Mezzina,Krzysztof Podlaski
視頻videohttp://file.papertrans.cn/830/829416/829416.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Reversible Computation; 14th International C Claudio Antares Mezzina,Krzysztof Podlaski Conference proceedings 2022 The Editor(s) (if appli
描述.This book constitutes the refereed proceedings of the 14th International Conference on Reversible Computation, RC 2022, which was held in Urbino, Italy, during July 5-6, 2021...The 10 full papers and 6 short papers included in this book were carefully reviewed and selected from 20 submissions. ?They were organized in topical sections named: Reversible and Quantum Circuits;? Applications of quantum Computing; Foundations and Applications..
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; computer hardware; computer networks; computer programming; computer systems; di
版次1
doihttps://doi.org/10.1007/978-3-031-09005-9
isbn_softcover978-3-031-09004-2
isbn_ebook978-3-031-09005-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Reversible Computation影響因子(影響力)




書目名稱Reversible Computation影響因子(影響力)學(xué)科排名




書目名稱Reversible Computation網(wǎng)絡(luò)公開度




書目名稱Reversible Computation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reversible Computation被引頻次




書目名稱Reversible Computation被引頻次學(xué)科排名




書目名稱Reversible Computation年度引用




書目名稱Reversible Computation年度引用學(xué)科排名




書目名稱Reversible Computation讀者反饋




書目名稱Reversible Computation讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:31 | 只看該作者
Formal Translation from?Reversing Petri Nets to?Coloured Petri Nets paper we extend these results by removing the restriction of token uniqueness. The proposed transformation from RPNs to CPNs has been implemented in a tool, which allows building an RPN and converting it to an equivalent CPN.
板凳
發(fā)表于 2025-3-22 01:24:15 | 只看該作者
0302-9743 ions. ?They were organized in topical sections named: Reversible and Quantum Circuits;? Applications of quantum Computing; Foundations and Applications..978-3-031-09004-2978-3-031-09005-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
地板
發(fā)表于 2025-3-22 07:20:19 | 只看該作者
5#
發(fā)表于 2025-3-22 09:41:19 | 只看該作者
6#
發(fā)表于 2025-3-22 13:43:29 | 只看該作者
Reversibility in?Erlang: Imperative Constructsrative features. From a theoretical point of view, the added primitives create different causal structures than those derived from the concurrent Erlang fragment previously handled in CauDEr, yet we show that the main results proved for CauDEr are still valid.
7#
發(fā)表于 2025-3-22 20:03:37 | 只看該作者
8#
發(fā)表于 2025-3-22 23:44:28 | 只看該作者
9#
發(fā)表于 2025-3-23 01:38:38 | 只看該作者
Constructing All Qutrit Controlled Clifford+, gates in?Clifford+esults for qubits are impossible. As an application of our results, we provide a procedure to implement any ternary classical reversible function on . trits as an ancilla-free qutrit unitary using . . gates.
10#
發(fā)表于 2025-3-23 08:36:55 | 只看該作者
Reordering Decision Diagrams for?Quantum Computing Is Harder Than You Might Thinkxplain why reordering is much harder in the latter. A case study shows that, also for quantum computing, reordering may lead to improvements of several orders of magnitude in the size of the decision diagrams, but also requires substantially more runtime.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江北区| 忻州市| 托克逊县| 裕民县| 巩义市| 师宗县| 枣庄市| 南涧| 新河县| 汤原县| 姜堰市| 广汉市| 金阳县| 扎囊县| 哈密市| 南投市| 盐池县| 宁国市| 辽阳市| 恩平市| 同江市| 景谷| 安仁县| 祥云县| 马山县| 成武县| 武安市| 马山县| 乐都县| 玉山县| 台北市| 海南省| 北票市| 海丰县| 成安县| 海盐县| 五河县| 景德镇市| 南阳市| 正阳县| 兴城市|