找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reuniting the Antipodes - Constructive and Nonstandard Views of the Continuum; Symposium Proceeding Peter Schuster,Ulrich Berger,Horst Ossw

[復(fù)制鏈接]
樓主: mentor
41#
發(fā)表于 2025-3-28 17:46:36 | 只看該作者
On Conway Numbers and Generalized Real Numbers,fining real numbers as (Conway) cuts in the set of rational numbers. Following his ideas, a constructive notion of real numbers will be developed. Parallels to and differences from the concept of generalized real numbers recently published by Fred Richman [Indag. Mathem., N. S., 9 (4) 595–606 (1998)] will be outlined.
42#
發(fā)表于 2025-3-28 22:13:07 | 只看該作者
43#
發(fā)表于 2025-3-29 02:38:03 | 只看該作者
The Points of (Locally) Compact Regular Formal Topologies,gh proved by intuitionistic logic, the result relies on a notion of maximality which contains an impredicative second-order quantification. In this note we present an alternative concept of maximality, entirely phrased in first-order terms, and give a predicative characterization of the points of a
44#
發(fā)表于 2025-3-29 04:29:06 | 只看該作者
45#
發(fā)表于 2025-3-29 08:34:04 | 只看該作者
46#
發(fā)表于 2025-3-29 13:40:30 | 只看該作者
47#
發(fā)表于 2025-3-29 19:35:03 | 只看該作者
48#
發(fā)表于 2025-3-29 21:21:23 | 只看該作者
49#
發(fā)表于 2025-3-30 02:17:47 | 只看該作者
,Curt Schmieden’s Approach to Infinitesimals, true for almost all finite natural n. In a paper of 1958 we used rational (and laterreal) sequences to establish a model in which Si was represented by the sequence of the finite natural numbers. Clearly, this approach was less powerful with respect to new applications than Robinson’s (1961) was. Y
50#
發(fā)表于 2025-3-30 05:45:35 | 只看該作者
A Sequent Calculus for Constructive Ordered Fields, extended with nonlogical rules. It is proved that structural rules, the rules of cut and contraction in particular, can be eliminated from derivations. The method of extension by nonlogical rules is applied also to the theory of real closed fileds, starting from a quantifier-free axiomatization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江阴市| 夏邑县| 邹城市| 澄迈县| 天镇县| 平和县| 泰和县| 拉孜县| 逊克县| 额尔古纳市| 沁源县| 浮山县| 萨迦县| 高青县| 汪清县| 天峻县| 江山市| 东丽区| 大邑县| 桦甸市| 水富县| 玉林市| 连山| 合肥市| 大关县| 哈巴河县| 兴安县| 阳山县| 集安市| 五大连池市| 新昌县| 乌什县| 福州市| 万荣县| 涪陵区| 元氏县| 绵竹市| 玉屏| 咸丰县| 礼泉县| 北京市|