找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Restricted-Orientation Convexity; Eugene Fink,Derick Wood Book 2004 Springer-Verlag Berlin Heidelberg 2004 Euclidean geometry.Generalized

[復制鏈接]
樓主: HEIR
11#
發(fā)表于 2025-3-23 10:00:31 | 只看該作者
Restricted-Orientation Convexity978-3-642-18849-7Series ISSN 1431-2654 Series E-ISSN 2193-2069
12#
發(fā)表于 2025-3-23 15:28:57 | 只看該作者
1431-2654 t are connected. This notion generalizes standard convexity and several types of nontraditional convexity. We explore the properties of this generalized convexity in multidimensional Euclidean space, describes restricted-orientation analogs of lines, hyperplanes, flats, and halfspaces, and identify
13#
發(fā)表于 2025-3-23 20:18:30 | 只看該作者
Introduction,ng topology, number theory and combinatorics [6, 14, 21]. Researchers have explored not only mathematical properties of convex sets, but also related computational problems [5, 13, 34], and applied the resulting algorithms in many practical areas, such as graphics, finite-element analysis, VLSI desi
14#
發(fā)表于 2025-3-23 22:45:13 | 只看該作者
Computational Problems,ernels, and identifying the regions visible from a given point. Researchers addressed the analogous standard-convexity problems in the early days of computational geometry; for example, consult the text of Preparata and Shamos [34]. They also developed similar techniques for several types of non-tra
15#
發(fā)表于 2025-3-24 04:12:12 | 只看該作者
Higher Dimensions,vex sets in ., and introduce O-connected sets, which are a subclass of O-convex sets with several special properties (Sect. 4.2). Then, we explore properties of O-connected curves (Sect. 4.3) and present visibility results for O-convex and O-connected sets (Sect. 4.4).
16#
發(fā)表于 2025-3-24 07:34:12 | 只看該作者
Generalized Halfspaces, them with standard halfspaces (Sect. 5.1). Then, we define directed O-halfspaces, which are a subclass of O-halfspaces with several special properties (Sect. 5.2). Finally, we characterize O-halfspaces in terms of their boundaries (Sect. 5.3) and complements (Sect. 5.4).
17#
發(fā)表于 2025-3-24 13:25:47 | 只看該作者
Strong Convexity,ve a condition for the equivalence of two orientation sets (Sect. 6.2). Finally, we study strongly O-convex halfspaces and characterize strongly O-convex sets through halfspace intersections (Sect. 6.3).
18#
發(fā)表于 2025-3-24 18:43:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:49:27 | 只看該作者
Book 2004ex sets that also hold for restricted-orientation convexity. We then introduce the notion of strong restricted-orientation convexity, which is an alternative generalization of convexity, and show that its properties are also similar to those of standard convexity. .
20#
發(fā)表于 2025-3-25 01:41:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
莲花县| 广丰县| 龙山县| 清镇市| 华安县| 高清| 尚义县| 千阳县| 河津市| 边坝县| 乐亭县| 来安县| 会东县| 玉门市| 厦门市| 佛冈县| 青神县| 恩平市| 永胜县| 都兰县| 博湖县| 札达县| 重庆市| 泗洪县| 新平| 贺兰县| 白玉县| 漳浦县| 长子县| 天门市| 溧阳市| 张家口市| 嘉义市| 兴业县| 朝阳市| 内江市| 凤阳县| 晋宁县| 方正县| 绥阳县| 富民县|