找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Singularities; A research textbook Herwig Hauser,Joseph Lipman,Adolfo Quirós Textbook 2000 Springer Basel AG 2000 Algebraisc

[復(fù)制鏈接]
樓主: 贊美
21#
發(fā)表于 2025-3-25 05:00:18 | 只看該作者
the simplest possible introduction to fundamentals of modem geometry: curvature, group actions, and covering spaces. 2. The prerequisites are modest and standard. A little linear algebra (mostly 2 x 2 matrices), calculus as far as hyperbolic functions, ba- sic group theory (subgroups and cosets), an
22#
發(fā)表于 2025-3-25 09:47:42 | 只看該作者
Herwig Hauseres" introduced here, which makes it possible to "see" the set of all possible voters‘ preferences leading to specified election outcomes. Thus, it now is possible to visually compare the likelihood of various conclusions. Also, geometry is applied to apportionment methods to uncover new explanations
23#
發(fā)表于 2025-3-25 12:28:29 | 只看該作者
978-3-0348-9550-7Springer Basel AG 2000
24#
發(fā)表于 2025-3-25 17:04:54 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:09 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/828492.jpg
26#
發(fā)表于 2025-3-26 00:56:48 | 只看該作者
https://doi.org/10.1007/978-3-0348-8399-3Algebraische Topologie; Differentialgeometrie; Morphism; equation; geometry; linear optimization; moduli s
27#
發(fā)表于 2025-3-26 05:31:31 | 只看該作者
A Course on Constructive Desingularization and Equivariance... We focus on canonical properties of this desingularization such as compatibility with change of base field and that of equivariance, namely the lifting of any group action on . to an action on the desingularization defined by this procedure.
28#
發(fā)表于 2025-3-26 09:34:26 | 只看該作者
29#
發(fā)表于 2025-3-26 15:24:57 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:23 | 只看該作者
Excellent Surfaces and Their Taut Resolutiondded in three-space and defined over an algebraically closed field of arbitrary characteristic. The proof of strong embedded resolution we describe here combines arguments and techniques of O. Zariski, H. Hironaka, S. Abhyankar and the author.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安顺市| 达拉特旗| 同心县| 祁东县| 台中县| 崇仁县| 巴林左旗| 玛沁县| 琼结县| 通榆县| 桐乡市| 湖州市| 宜兰县| 民丰县| 新宁县| 静乐县| 呈贡县| 宁乡县| 射阳县| 临泽县| 温州市| 巴中市| 宿松县| 灵山县| 安达市| 樟树市| 龙州县| 武乡县| 海宁市| 开远市| 新邵县| 鲁山县| 紫金县| 南岸区| 师宗县| 恩施市| 土默特右旗| 辽宁省| 隆昌县| 黔江区| 沭阳县|