找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resilient Smart Cities; Theoretical and Empi Ayyoob Sharifi,Pourya Salehi Book 2022 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: 空格
21#
發(fā)表于 2025-3-25 06:28:03 | 只看該作者
Data-Sharing Approaches for Achieving Resilient Smart Cities: A Case of Smart City R&D Project in Dan particular analyzes how the national smart city R&D project instills resilience in a smart city. This study analyzes a government-funded smart city R&D project in Daegu, South Korea with a focus on three main topics: the effects of the system, the main items that should be considered by planners a
22#
發(fā)表于 2025-3-25 08:02:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:22:39 | 只看該作者
Wielding a Concept with Two Edges: How to Make Use of the Smart Cities Concept and Understanding Itse take a closer look at both concepts, identify their core ideas and examine two opposing narratives about how they interact: the thesis of Smart Cities supporting Resilient Cities, and the antithesis that they clash and contradict each other. We examine practical examples for Smart City application
24#
發(fā)表于 2025-3-25 17:33:16 | 只看該作者
25#
發(fā)表于 2025-3-25 22:07:02 | 只看該作者
26#
發(fā)表于 2025-3-26 02:08:46 | 只看該作者
.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
27#
發(fā)表于 2025-3-26 04:34:04 | 只看該作者
.. We are interested here in small . and show that for all .∈..?[?2,2] .we have that . > 0. See Proposition 4..Considering the skew shift on ..and the Hamiltonian .where .we show that the Lyapounov exponent .is strictly positive for .∈..?[?2,2] satisfying (2), provided we assume in (3) that .. See P
28#
發(fā)表于 2025-3-26 08:39:08 | 只看該作者
29#
發(fā)表于 2025-3-26 13:45:18 | 只看該作者
30#
發(fā)表于 2025-3-26 17:20:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田县| 九龙坡区| 康定县| 沐川县| 常熟市| 高尔夫| 衡水市| 离岛区| 无极县| 临清市| 南陵县| 游戏| 洱源县| 洞口县| 玉环县| 吐鲁番市| 淮北市| 南华县| 泽州县| 滨州市| 云林县| 铁岭市| 栖霞市| 米林县| 西盟| 呼玛县| 海南省| 渭源县| 嘉荫县| 亚东县| 永靖县| 神木县| 贡嘎县| 东城区| 错那县| 栖霞市| 武乡县| 合川市| 邹城市| 鸡东县| 富顺县|