找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reshetnyak‘s Theory of Subharmonic Metrics; Fran?ois Fillastre,Dmitriy Slutskiy Book 2023 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
樓主: 可憐
21#
發(fā)表于 2025-3-25 07:08:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:31:06 | 只看該作者
On Isoperimetric Property of Two-dimensional Manifolds with Curvature Bounded from Above by , that for each open set .???. . We use the following notation: . . Let us suppose that for each compact .???., .(.)??0 such that for .?∈?. and .?
23#
發(fā)表于 2025-3-25 12:11:14 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:19 | 只看該作者
On the Potential Theoretic Aspect of Alexandrov Surface Theory,rs—amongst whom, most notably Wintner [.] and [.], Chern–Hartman–Wintner [.], and Reshetnyak [.] (Chap. .)—have sought to determine the weakest possible conditions under which the existence of such coordinate systems may be proven.
25#
發(fā)表于 2025-3-25 22:59:53 | 只看該作者
How I Got Involved in Research on Two-Dimensional Manifolds of Bounded Curvature,In the thirties of the last century, a new bright figure appeared on the horizon of Soviet mathematics: Aleksandr Danilovich Alexandrov. He was an actively working young mathematician, a man with outstanding talent and bright temperament. He is the author of research on the theory of convex bodies, continuing the work of H. Minkowski.
26#
發(fā)表于 2025-3-26 02:57:08 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature,The notion of two-dimensional manifolds of bounded curvature was introduced by A. D. Alexandrov in [.,.,.,.].
27#
發(fā)表于 2025-3-26 07:43:33 | 只看該作者
Isothermal Coordinates on Manifolds of Bounded Curvature II, The present second part of the article is devoted to the proof of three basic lemmas stated in [.] (Chap. .). The definitions of the main notions and the terminology adopted in [.] (Chap. .) are supposed to be known in what follows.
28#
發(fā)表于 2025-3-26 08:49:25 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:09 | 只看該作者
Turn of Curves in Manifolds of Bounded Curvature with Isothermal Metric,A. D. Alexandrov [., .] introduced an important class of metric spaces—two-dimensional manifolds of bounded curvature. The theory of these spaces was developed in detail by A. D. Alexandrov in cooperation with V. A. Zalgaller. The main results of this theory are explained in the monograph [.].
30#
發(fā)表于 2025-3-26 20:13:03 | 只看該作者
Fran?ois Fillastre,Dmitriy SlutskiyThe articles of Yu. G. Reshetnyak about surfaces of bounded curvature accessible and translated.These articles are the only references for the complete proofs of Reshetnyak‘s theorem on the subject.It
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
融水| 兴山县| 米易县| 阳原县| 大宁县| 齐齐哈尔市| 永年县| 仙居县| 江都市| 宿松县| 江孜县| 黎平县| 禄丰县| 绥宁县| 涟源市| 固始县| 沧源| 望城县| 邯郸市| 青浦区| 攀枝花市| 莱州市| 巧家县| 石景山区| 佳木斯市| 崇阳县| 宜兰市| 松阳县| 沙洋县| 靖州| 固阳县| 苍南县| 宾阳县| 洪江市| 库尔勒市| 泗水县| 射洪县| 陵水| 福泉市| 北碚区| 峡江县|