找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computer Science; 6th Conference, CRI Paulin Melatagia Yonta,Kamel Barkaoui,Omer-Blaise Conference proceedings 2024 The Edito

[復制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 15:26:17 | 只看該作者
,Time Aware Implicit Social Influence Estimation to?Enhance Recommender Systems Performances,icant role in our daily lives. However, with the constantly growing addition of items on these platforms, it becomes challenging for users to select the products that interest them. Hence, the implementation of recommender systems to facilitate this selection process. To enhance these recommender sy
42#
發(fā)表于 2025-3-28 21:38:27 | 只看該作者
,Analysis of?COVID-19 Coughs: From the?Mildest to?the?Most Severe Form, a?Realistic Classification Un over 600 million positive cases and over 6 million deaths worldwide. Therefore, an efficient, inexpensive, and ubiquitous diagnostic tool is essential to help fight lung disease and the COVID-19 crisis. Deep learning and machine learning algorithms can be used to analyze the cough sounds of infect
43#
發(fā)表于 2025-3-28 23:25:38 | 只看該作者
,SLCDeepETC: An On-Demand Analysis Ready Data Pipeline on?Sentinel-1 Single Look Complex for?Deep Legle Look Complex products from Sentinel-1 to predict some environmental phenomena using Deep Learning. By retaining all original sensor measurements, it has been proven that interferometry data on Single Look Complex products, when analyzed with Deep Learning, can better inform data restoration, coh
44#
發(fā)表于 2025-3-29 06:42:02 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:02 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:12 | 只看該作者
47#
發(fā)表于 2025-3-29 17:28:50 | 只看該作者
,Explaining Meta-learner’s Predictions: Case of?Corporate CO2 Emissions,fore necessary for companies to control and reduce their pollution levels, and this requires knowing the amount of CO. emissions that can be produced and identifying the factors responsible for it. Several works have been carried out with the aim of predicting the quantity of CO. emitted at the comp
48#
發(fā)表于 2025-3-29 20:42:26 | 只看該作者
49#
發(fā)表于 2025-3-30 02:32:01 | 只看該作者
,A Hybrid Algorithm Based on?Tabu Search and?K-Means for?Solving the?Traveling Salesman Problem,earch (TS). In this hybrid approach, we first apply the K-means algorithm to group cities into several clusters. Then we use tabu search to explore the solution space to optimise the path within each cluster. This avoids getting stuck in local optima and allows us to explore new, potentially better
50#
發(fā)表于 2025-3-30 04:38:02 | 只看該作者
,Hybridization of?a?Recurrent Neural Network by?Quadratic Programming for?Combinatory Optimization: ss, but they are still incomplete because they don’t take into account the changing trend of electricity demand in buildings. In this paper, we propose a novel approach to minimizing joule loss using a hybridization of a recurrent neural network (RNN) and quadratic programming (QP). The RNN is used
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
行唐县| 即墨市| 扶沟县| 恩施市| 英山县| 保靖县| 巫溪县| 沧州市| 进贤县| 黑龙江省| 洪湖市| 汉川市| 安远县| 安福县| 怀安县| 八宿县| 应城市| 津南区| 南川市| 金山区| 博湖县| 万州区| 韶关市| 乌鲁木齐市| 石柱| 长葛市| 肥乡县| 石首市| 太保市| 宿迁市| 镇坪县| 成武县| 平谷区| 枝江市| 西和县| 垣曲县| 武夷山市| 陆良县| 朝阳县| 会同县| 凤庆县|