找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research in Computational Topology 2; Ellen Gasparovic,Vanessa Robins,Katharine Turner Book 2022 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: VERSE
31#
發(fā)表于 2025-3-26 22:14:41 | 只看該作者
Book 2022ntaining the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations a
32#
發(fā)表于 2025-3-27 02:26:20 | 只看該作者
33#
發(fā)表于 2025-3-27 06:27:04 | 只看該作者
The Persistent Homology of Dual Digital Image Constructions, two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complex
34#
發(fā)表于 2025-3-27 12:20:38 | 只看該作者
Morse-Based Fibering of the Persistence Rank Invariant,dules are still lacking in the available topological data analysis toolboxes. Other issues, such as interpretation and visualization of the output, remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules.
35#
發(fā)表于 2025-3-27 17:42:00 | 只看該作者
36#
發(fā)表于 2025-3-27 17:47:46 | 只看該作者
Tile-Transitive Tilings of the Euclidean and Hyperbolic Planes by Ribbons,ariant equivalence. The hyperbolic case is relevant to self-assembly of branched polymers. Our result is achieved by combining and extending known methods for enumerating crystallographic disk-like tilings. We obtain a natural way of describing all possible stabiliser subgroups of tile-transitive ti
37#
發(fā)表于 2025-3-27 23:42:03 | 只看該作者
38#
發(fā)表于 2025-3-28 02:39:48 | 只看該作者
39#
發(fā)表于 2025-3-28 10:17:03 | 只看該作者
40#
發(fā)表于 2025-3-28 12:52:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
白河县| 蒙阴县| 锡林郭勒盟| 山阳县| 香格里拉县| 青田县| 仁寿县| 南岸区| 沈阳市| 峨边| 普宁市| 云和县| 石阡县| 浮山县| 呈贡县| 乌审旗| 永兴县| 镇坪县| 铁力市| 合阳县| 阜南县| 英德市| 峨山| 绥中县| 宝兴县| 内丘县| 香港| 双江| 霍林郭勒市| 灵石县| 赤壁市| 纳雍县| 宜川县| 正镶白旗| 阿巴嘎旗| 辽中县| 翼城县| 克什克腾旗| 花垣县| 宜宾市| 原阳县|