找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Research Problems in Discrete Geometry; Peter Brass,William O. J. Moser,János Pach Textbook 2005 Springer-Verlag New York 2005 Lattice.com

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 06:47:43 | 只看該作者
22#
發(fā)表于 2025-3-25 10:36:27 | 只看該作者
Problems on Repeated Subconfigurations,lence relation. The basic questions discussed in Chapter 5 are to determine the size of the largest equivalence class and the number of distinct equivalence classes. Erd?s and Purdy [.], [.] started the investigation of the same questions for .-dimensional simplices in IR., that is, for (. + 1)-tupl
23#
發(fā)表于 2025-3-25 14:48:16 | 只看該作者
24#
發(fā)表于 2025-3-25 17:55:49 | 只看該作者
Problems on Points in General Position,equire that no three elements be collinear can usually be described as problems on .. The order type is an equivalence relation on sets of . points in the plane, no three collinear, in which two sets . are equivalent if and only if there is a bijection .: . → . between the points such that each tria
25#
發(fā)表于 2025-3-25 23:13:23 | 只看該作者
26#
發(fā)表于 2025-3-26 03:15:31 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:14 | 只看該作者
Geometric Inequalities,very old result that has been generalized in many directions. Apart from the fact that one does not need convexity here, essentially the same result holds in all scenarios in which the notions of “perimeter” and “area” can be naturally defined. The embedding space can also be varied: similar inequal
28#
發(fā)表于 2025-3-26 09:19:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:36:43 | 只看該作者
Distance Problems,ng points to coincide would destroy the geometric aspect of the problem and essentially reduce it to a graph-theoretic problem. Given any point set ., we can define its so-called ., connecting two elements of . by an edge if and only if their distance is one.
30#
發(fā)表于 2025-3-26 19:34:35 | 只看該作者
Geometric Inequalities,erimeter and the area. For the extensive literature on the many aspects of these problems see [.], [.], [.], [.], [.], [.]. In this section, we concentrate on isoperimetric problems in discrete geometry, and avoid most questions that largely belong to convexity, differential geometry, or geometric measure theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芮城县| 临漳县| 鄯善县| 林口县| 浦东新区| 远安县| 鄢陵县| 抚松县| 博乐市| 宣武区| 左云县| 临泽县| 囊谦县| 蓝田县| 佛教| 余干县| 太湖县| 确山县| 温州市| 屏边| 平武县| 竹溪县| 青铜峡市| 黄梅县| 延川县| 尤溪县| 玛纳斯县| 金华市| 灌阳县| 彭水| 齐齐哈尔市| 巴中市| 临海市| 谷城县| 合山市| 武汉市| 临泉县| 芦溪县| 枞阳县| 和林格尔县| 密山市|