找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Research Directions in Number Theory; Women in Numbers V Alina Bucur,Wei Ho,Renate Scheidler Book 2024 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 8984|回復(fù): 46
樓主
發(fā)表于 2025-3-21 16:54:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Research Directions in Number Theory
副標(biāo)題Women in Numbers V
編輯Alina Bucur,Wei Ho,Renate Scheidler
視頻videohttp://file.papertrans.cn/828/827753/827753.mp4
概述Showcases high-quality research conducted by female number theorists.Presents new and original cutting-edge research.Includes useful and accessible survey articles
叢書(shū)名稱Association for Women in Mathematics Series
圖書(shū)封面Titlebook: Research Directions in Number Theory; Women in Numbers V Alina Bucur,Wei Ho,Renate Scheidler Book 2024 The Editor(s) (if applicable) and Th
描述.This is the fifth proceedings volume published under the Women in Numbers umbrella. The WIN?workshops and their proceedings volumes are part of the WIN network, aimed at highlighting the?research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields..The volume contains research articles in the mathematical area of number theory, written by teams of scholars at all levels in the field. More information about the network, its goals and purpose, past and future conferences, and past proceedings volumes, can be found on the WIN website..This volume contains research outcomes and results produced by the collaborative research groups created under the Women in Numbers V workshop, the 5th in its series. The actual workshop was to take place in 2020 at the Banff International Research Station in Banff, Canada, but could not take place onsite due to COVID. The associated research groups, each consisting of 1-2 leaders and 2-4 junior researchers, were formed nevertheless and their collaborations went ahead in purely virtual form, as well as other papers by author teams for wh
出版日期Book 2024
關(guān)鍵詞Women in Numbers conference; women in mathematics; representations of p-adic groups; dynamical Mahler m
版次1
doihttps://doi.org/10.1007/978-3-031-51677-1
isbn_softcover978-3-031-51679-5
isbn_ebook978-3-031-51677-1Series ISSN 2364-5733 Series E-ISSN 2364-5741
issn_series 2364-5733
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Research Directions in Number Theory影響因子(影響力)




書(shū)目名稱Research Directions in Number Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱Research Directions in Number Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Research Directions in Number Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Research Directions in Number Theory被引頻次




書(shū)目名稱Research Directions in Number Theory被引頻次學(xué)科排名




書(shū)目名稱Research Directions in Number Theory年度引用




書(shū)目名稱Research Directions in Number Theory年度引用學(xué)科排名




書(shū)目名稱Research Directions in Number Theory讀者反饋




書(shū)目名稱Research Directions in Number Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:12:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:54 | 只看該作者
地板
發(fā)表于 2025-3-22 07:15:13 | 只看該作者
5#
發(fā)表于 2025-3-22 11:56:13 | 只看該作者
6#
發(fā)表于 2025-3-22 13:39:19 | 只看該作者
,From Fontaine–Mazur Conjecture to Analytic Pro-,-groups: A Survey, statement in 1993, and various angles have been adopted by numerous authors to try to tackle it. Among those, a range of tools that is not so well known among young arithmetic geometers goes back to Boston’s seminal 1992 paper and relies on purely group-theoretic methods (rather than representation
7#
發(fā)表于 2025-3-22 18:05:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:47:19 | 只看該作者
Mock Theta Functions and Related Combinatorics,roduced by Ramanujan in his last letter to Hardy in 1920, which we now know to be important examples of mock modular forms. Our work is inspired by Beck’s conjecture, now a theorem of Andrews, related to Euler’s identity: The excess of the number of parts in all partitions of . into odd parts over t
9#
發(fā)表于 2025-3-23 03:10:21 | 只看該作者
Transcendental Lattices of Certain Singular ,3 Surfaces,cendental lattice ., the Verrill’s pencil with transcendental lattice ., and another pencil linked to Verrill’s pencil with transcendental lattice .. Many corollaries are deduced. For example, some singular .3 surfaces belong to different pencils or are Kummer surfaces of .3 surfaces of another penc
10#
發(fā)表于 2025-3-23 06:23:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望奎县| 灵寿县| 微山县| 信丰县| 木兰县| 嘉峪关市| 广州市| 台北市| 湘潭市| 泾源县| 溧水县| 金坛市| 金华市| 神池县| 冀州市| 大同县| 康乐县| 桂林市| 宁阳县| 卓尼县| 界首市| 康平县| 错那县| 南和县| 邵东县| 湘潭县| 高邑县| 广饶县| 昌平区| 德阳市| 藁城市| 会同县| 望城县| 武强县| 靖安县| 孝义市| 临海市| 永顺县| 湖北省| 达日县| 双城市|