找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Requirements Engineering: Foundation for Software Quality; 29th International W Alessio Ferrari,Birgit Penzenstadler Conference proceedings

[復(fù)制鏈接]
樓主: 退縮
11#
發(fā)表于 2025-3-23 12:57:13 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:53:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:49 | 只看該作者
Using Language Models for?Enhancing the?Completeness of?Natural-Language Requirementstively discovering omissions in requirements and the level of noise in the predictions. Our second contribution is devising a machine learning-based filter that post-processes predictions made by BERT to further reduce noise. We empirically evaluate our solution over 40 requirements specifications d
15#
發(fā)表于 2025-3-24 05:45:55 | 只看該作者
Requirement or?Not, That?is the?Question: A Case from?the?Railway Industryhow that the transformer-based BERT classifier performs the best, with an average F1 score of 0.82 and 0.87 on industrial and public datasets, respectively. Our results also confirm that few-shot classifiers can achieve comparable results with an average F1 score of 0.76 on significantly lower sampl
16#
發(fā)表于 2025-3-24 10:15:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:40 | 只看該作者
18#
發(fā)表于 2025-3-24 18:07:04 | 只看該作者
Requirements Classification Using FastText and?BETO in?Spanish Documentsataset, but BETO outperformed other classifiers on prediction performance in a dataset with different origins. .: Our evaluation provides a quantitative analysis of the classification performance of fastTest and BETO in comparison with ML/DL algorithms, the external validity of trained models on ano
19#
發(fā)表于 2025-3-24 21:04:02 | 只看該作者
Exploring Requirements for?Software that?Learns: A Research Previewunique characteristics of software requirements that are specific to ML components. To this end, we collect and examine requirements from both academic and industrial sources. . To the best of our knowledge, this is the first work that presents real-life, industrial patterns of requirements for ML c
20#
發(fā)表于 2025-3-25 00:27:01 | 只看該作者
An Investigation of?Challenges Encountered When Specifying Training Data and?Runtime Monitors for?Saovides a list of the identified underlying challenges related to the difficulties practitioners experience when specifying training data and runtime monitoring for ML models. Furthermore, interconnection between the challenges were found and based on these connections recommendation proposed to over
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 鄂伦春自治旗| 青岛市| 中西区| 三亚市| 文山县| 探索| 海淀区| 泊头市| 咸阳市| 枣庄市| 任丘市| 大安市| 新丰县| 华亭县| 兰西县| 青神县| 滦南县| 吉水县| 什邡市| 即墨市| 虎林市| 津市市| 文山县| 唐河县| 石渠县| 海原县| 宁晋县| 安徽省| 桑植县| 福州市| 汝南县| 延吉市| 平度市| 延庆县| 天全县| 夏邑县| 讷河市| 措美县| 贵阳市| 新民市|