找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Requirements Engineering; First Asia Pacific R Didar Zowghi,Zhi Jin Conference proceedings 2014 Springer-Verlag Berlin Heidelberg 2014 mode

[復制鏈接]
樓主: GUAFF
51#
發(fā)表于 2025-3-30 09:39:43 | 只看該作者
Syazwani Yahya,Massila Kamalrudin,Safiah Sidek,John Grundyhroughout..The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. Whil
52#
發(fā)表于 2025-3-30 12:58:33 | 只看該作者
Masahiro Ide,Tomoko Kishida,Mikio Aoyama,Yasuhiro Kikushimaf the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
53#
發(fā)表于 2025-3-30 17:41:26 | 只看該作者
Takanobu Kobori,Hironori Washizaki,Yoshiaki Fukazawa,Daisuke Hirabayashi,Katsutoshi Shintani,Yasuko f the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
54#
發(fā)表于 2025-3-31 00:19:18 | 只看該作者
Zhuoqun Yang,Zhi Jinf the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
55#
發(fā)表于 2025-3-31 03:05:18 | 只看該作者
56#
發(fā)表于 2025-3-31 08:49:36 | 只看該作者
57#
發(fā)表于 2025-3-31 10:03:21 | 只看該作者
Junko Shirogane A particular case of such extensions are cyclic extensions. Hilbert’s theorem 90 may be considered in the context of so-called cohomology groups (defined for G-modules), which we mention briefly. We further classify all cubic and quartic Galois extensions of rational numbers in the context of cohom
58#
發(fā)表于 2025-3-31 15:16:09 | 只看該作者
Mazin Saeed,Faisal Saleh,Sadiq Al-Insaif,Mohamed El-AttarTheorem 13. .[x] .
59#
發(fā)表于 2025-3-31 19:02:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
信丰县| 威宁| 宁国市| 南丰县| 靖边县| 崇阳县| 子洲县| 天门市| 北辰区| 万荣县| 灌南县| 尚志市| 浮山县| 宝兴县| 潼关县| 安阳县| 本溪| 长乐市| 丰都县| 灌云县| 宣恩县| 蒲城县| 乌兰察布市| 磐石市| 望江县| 右玉县| 简阳市| 贵德县| 枣强县| 浮梁县| 星座| 靖宇县| 桐城市| 望奎县| 韶山市| 扎兰屯市| 宁国市| 黄浦区| 富蕴县| 无极县| 甘洛县|