找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Requirements Engineering; First Asia Pacific R Didar Zowghi,Zhi Jin Conference proceedings 2014 Springer-Verlag Berlin Heidelberg 2014 mode

[復制鏈接]
樓主: GUAFF
51#
發(fā)表于 2025-3-30 09:39:43 | 只看該作者
Syazwani Yahya,Massila Kamalrudin,Safiah Sidek,John Grundyhroughout..The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. Whil
52#
發(fā)表于 2025-3-30 12:58:33 | 只看該作者
Masahiro Ide,Tomoko Kishida,Mikio Aoyama,Yasuhiro Kikushimaf the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
53#
發(fā)表于 2025-3-30 17:41:26 | 只看該作者
Takanobu Kobori,Hironori Washizaki,Yoshiaki Fukazawa,Daisuke Hirabayashi,Katsutoshi Shintani,Yasuko f the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
54#
發(fā)表于 2025-3-31 00:19:18 | 只看該作者
Zhuoqun Yang,Zhi Jinf the reader. We develop ?eld theory, with our goal being the Fundamental Theorem of Galois Theory (the FTGT). On the way, we consider extension ?elds, and deal with the notions of normal, separable, and Galois extensions. Then, in the penul- mate section of this chapter, we reach our main goal, the
55#
發(fā)表于 2025-3-31 03:05:18 | 只看該作者
56#
發(fā)表于 2025-3-31 08:49:36 | 只看該作者
57#
發(fā)表于 2025-3-31 10:03:21 | 只看該作者
Junko Shirogane A particular case of such extensions are cyclic extensions. Hilbert’s theorem 90 may be considered in the context of so-called cohomology groups (defined for G-modules), which we mention briefly. We further classify all cubic and quartic Galois extensions of rational numbers in the context of cohom
58#
發(fā)表于 2025-3-31 15:16:09 | 只看該作者
Mazin Saeed,Faisal Saleh,Sadiq Al-Insaif,Mohamed El-AttarTheorem 13. .[x] .
59#
發(fā)表于 2025-3-31 19:02:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
竹溪县| 安陆市| 砚山县| 嘉义市| 南开区| 皋兰县| 习水县| 茌平县| 鄄城县| 鹿邑县| 年辖:市辖区| 科技| 澄江县| 铜陵市| 吉木乃县| 图木舒克市| 巴里| 克东县| 溆浦县| 茶陵县| 榆社县| 武邑县| 东平县| 吴旗县| 伊金霍洛旗| 韩城市| 鸡西市| 遂川县| 嘉祥县| 莱芜市| 康平县| 望奎县| 武宁县| 临武县| 大姚县| 天津市| 祁连县| 玉树县| 米泉市| 西青区| 资兴市|