找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of SL2(Fq); Cédric Bonnafé Textbook 2011 Springer-Verlag London Limited 2011 Deligne-Lusztig theory.Morita equivalences.SL

[復制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 11:49:52 | 只看該作者
Unequal Characteristic: Equivalences of Categories abelian defect group), the equivalences of categories predicted by Broué’s conjecture are always Morita equivalences (see Sections?8.1 and?8.2). While it is possible to obtain this result using Brauer trees and Brauer’s theorem?B.4.2, we give instead a concrete construction of these equivalences us
12#
發(fā)表于 2025-3-23 15:08:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:05:57 | 只看該作者
Equal Characteristic to the construction of the simple .-modules. This classical construction generalises to the case of finite reductive groups. It turns out that the simple .-modules are the restrictions of simple “rational representations” of the algebraic group .. Having obtained this description the determination
14#
發(fā)表于 2025-3-24 00:14:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:36:11 | 只看該作者
Structure of ,The purpose of this chapter is to study the structure of the group .: noteworthy subgroups (tori, Borel subgroups, the Bruhat decomposition), distinguished subgroups, conjugacy classes, Sylow subgroups and their normalisers.
16#
發(fā)表于 2025-3-24 10:31:44 | 只看該作者
The Geometry of the Drinfeld CurveThe purpose of this chapter is to assemble the geometric properties of . and of the action of .×(..?〈.〉.) which allows us to calculate its .-adic cohomology (as a module for the monoid .×(..?〈.〉.)). A large part of this chapter is dedicated to the construction of quotients of . by the actions of the finite groups ., . and ...
17#
發(fā)表于 2025-3-24 12:09:50 | 只看該作者
Harish-Chandra InductionIn this chapter we study Harish-Chandra induction, which associates to a .-module the .-module obtained by first extending the .-module to a .-module (letting . act trivially) and then inducing to .. This construction allows us to obtain roughly half of the irreducible characters of ..
18#
發(fā)表于 2025-3-24 17:47:01 | 只看該作者
Special CasesIn this chapter we will make explicit certain exotic properties of the groups . when .=3, 5 or 7. These include exceptional isomorphisms, inclusions as subgroups of ., and realisations as subgroups of reflection groups. For a recollection of definitions, results about reflection groups, see the Appendix C.
19#
發(fā)表于 2025-3-24 23:04:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:48:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
德钦县| 昔阳县| 和田市| 廊坊市| 华阴市| 绥化市| 南靖县| 林口县| 合作市| 万盛区| 绥棱县| 湖州市| 区。| 招远市| 达尔| 靖安县| 弥渡县| 滨海县| 乐昌市| 民县| 望谟县| 唐海县| 恩平市| 吕梁市| 十堰市| 黄平县| 东城区| 建始县| 措美县| 新田县| 碌曲县| 昌江| 通州区| 聂拉木县| 沈阳市| 东乡县| 时尚| 横峰县| 北川| 黔江区| 衡阳市|