找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Reductive Groups; In Honor of the 60th Monica Nevins,Peter E. Trapa Book 2015 Springer International Publishing Switzerl

[復(fù)制鏈接]
樓主: Retina
31#
發(fā)表于 2025-3-27 00:41:14 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:24:23 | 只看該作者
34#
發(fā)表于 2025-3-27 09:42:31 | 只看該作者
35#
發(fā)表于 2025-3-27 13:51:09 | 只看該作者
,Hecke algebras with unequal parameters and Vogan’s left cell invariants, to an invariant of left cells in the sense of Kazhdan and Lusztig. Although it is not a complete invariant, it is extremely useful in describing left cells. Here, we propose a general framework for defining such invariants which also applies to Hecke algebras with unequal parameters.
36#
發(fā)表于 2025-3-27 19:50:28 | 只看該作者
The smooth loci of spiral Schubert varieties of type ,, by the number of torus-invariant curves passing through that point. In this paper we determine the locus of smooth points of a spiral Schubert variety of type .. This continues the study begun in [7], where the locus of rationally smooth points was determined. The main result describes the smooth l
37#
發(fā)表于 2025-3-27 22:01:11 | 只看該作者
Dirac cohomology, elliptic representations and endoscopy,hip of Dirac cohomology with .-cohomology and nilpotent Lie algebra cohomology; the second part (Sections 8–13) is devoted to understanding the unitary elliptic representations and endoscopic transfer by using the techniques in Dirac cohomology. A few problems and conjectures are proposed for furthe
38#
發(fā)表于 2025-3-28 03:33:30 | 只看該作者
39#
發(fā)表于 2025-3-28 08:12:35 | 只看該作者
Comparing and characterizing some constructions of canonical bases from Coxeter systems,ntilinear map. Together, these form an example of what Webster calls a pre-canonical structure, relative to which the well-known Kazhdan–Lusztig basis of . is a canonical basis. Lusztig and Vogan defined a representation of a modified Iwahori–Hecke algebra on the free .-module generated by the set o
40#
發(fā)表于 2025-3-28 12:28:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汤阴县| 长汀县| 哈巴河县| 阜新| 千阳县| 岳阳市| 建水县| 海丰县| 湄潭县| 新和县| 丹东市| 乡城县| 榆树市| 玛沁县| 遂宁市| 安泽县| 民乐县| 小金县| 利津县| 苏尼特左旗| 秀山| 长宁县| 舒城县| 保定市| 利津县| 德令哈市| 南丹县| 杭锦后旗| 百色市| 大埔区| 双辽市| 铜山县| 日土县| 静海县| 西乌珠穆沁旗| 达州市| 中山市| 林芝县| 望城县| 休宁县| 射阳县|