找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Linear Operators Between Banach Spaces; David E. Edmunds,W. Desmond Evans Book 2013 Springer Basel 2013 approximation p

[復(fù)制鏈接]
查看: 26017|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:27:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Representations of Linear Operators Between Banach Spaces
編輯David E. Edmunds,W. Desmond Evans
視頻videohttp://file.papertrans.cn/828/827485/827485.mp4
概述No similar treatment existing in book form.Very recent and ongoing developments.Likely to stimulate interest in a difficult and interesting branch of analysis ?
叢書(shū)名稱Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Representations of Linear Operators Between Banach Spaces;  David E. Edmunds,W. Desmond Evans Book 2013 Springer Basel 2013 approximation p
描述The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recursively obtained sequence of points on the unit sphere of the initial space and a corresponding sequence of positive numbers that correspond to the eigenvectors and eigenvalues of the map in the Hilbert space case. The lack of orthogonality is partially compensated by the systematic use of polar sets. There are applications to the .p.-Laplacian and similar nonlinear partial differential equations. Preliminary material is presented in the first chapter, the main results being established in Chapter 2. The final chapter is devoted to the problems encountered when trying to represent non-compact maps.
出版日期Book 2013
關(guān)鍵詞approximation property; compact operators; p-Laplacian; strictly and unformly convex Banach spaces; part
版次1
doihttps://doi.org/10.1007/978-3-0348-0642-8
isbn_ebook978-3-0348-0642-8Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightSpringer Basel 2013
The information of publication is updating

書(shū)目名稱Representations of Linear Operators Between Banach Spaces影響因子(影響力)




書(shū)目名稱Representations of Linear Operators Between Banach Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Representations of Linear Operators Between Banach Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Representations of Linear Operators Between Banach Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Representations of Linear Operators Between Banach Spaces被引頻次




書(shū)目名稱Representations of Linear Operators Between Banach Spaces被引頻次學(xué)科排名




書(shū)目名稱Representations of Linear Operators Between Banach Spaces年度引用




書(shū)目名稱Representations of Linear Operators Between Banach Spaces年度引用學(xué)科排名




書(shū)目名稱Representations of Linear Operators Between Banach Spaces讀者反饋




書(shū)目名稱Representations of Linear Operators Between Banach Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:08 | 只看該作者
https://doi.org/10.1007/978-3-0348-0642-8approximation property; compact operators; p-Laplacian; strictly and unformly convex Banach spaces; part
板凳
發(fā)表于 2025-3-22 04:03:15 | 只看該作者
地板
發(fā)表于 2025-3-22 04:48:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:55:00 | 只看該作者
David E. Edmunds,W. Desmond EvansNo similar treatment existing in book form.Very recent and ongoing developments.Likely to stimulate interest in a difficult and interesting branch of analysis ?
6#
發(fā)表于 2025-3-22 14:41:22 | 只看該作者
7#
發(fā)表于 2025-3-22 20:23:55 | 只看該作者
8#
發(fā)表于 2025-3-22 23:21:43 | 只看該作者
9#
發(fā)表于 2025-3-23 05:18:07 | 只看該作者
Representation of Compact Linear Operators,d Theorem 1.2.25 shows a Banach space . has the approximation property (AP) if and only if given any Banach space . and any compact map . can be approximated arbitrarily closely in norm by a finite rank operator.
10#
發(fā)表于 2025-3-23 06:30:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和田县| 遂溪县| 剑河县| 宁陕县| 双鸭山市| 巫溪县| 霍邱县| 定结县| 博白县| 舒城县| 乌什县| 洛宁县| 西和县| 汶上县| 武邑县| 区。| 安福县| 凤山市| 长沙市| 宜宾县| 五家渠市| 南丹县| 苗栗市| 朝阳县| 内乡县| 长武县| 双辽市| 汨罗市| 黎川县| 宜章县| 井冈山市| 眉山市| 新郑市| 湄潭县| 会宁县| 嘉定区| 新田县| 星子县| 万年县| 怀仁县| 海伦市|