找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Discrete Functions; Tsutomu Sasao,Masahiro Fujita Book 1996 Kluwer Academic Publishers 1996 CAD.algorithms.complexity.c

[復(fù)制鏈接]
樓主: commotion
11#
發(fā)表于 2025-3-23 12:21:16 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:22 | 只看該作者
Multi-Terminal Binary Decision Diagrams and Hybrid Decision Diagrams,ow multi-terminal binary decision diagrams (MTBDDs) can be used to represent such functions concisely. The Walsh transform and Reed-Muller transform have numerous applications in computer-aided design, but the usefulness of these techniques in practice has been limited by the size of the binary valu
13#
發(fā)表于 2025-3-23 18:07:02 | 只看該作者
Edge Valued Binary Decision Diagrams,functions (PBF). .s are particularly useful when both arithmetic and Boolean operations are required. We describe a general algorithm on .s for performing any binary operation that is closed over the integers. Next, we discuss the relation between the probability expression of a Boolean function and
14#
發(fā)表于 2025-3-24 00:18:52 | 只看該作者
Arithmetic Transform of Boolean Functions,ns. Such arithmetic transformations can give us new insight into solving some interesting problems. For example, the transformed functions can be easily evaluated (simulated) on integers or real numbers. Through such arithmetic simulation we can probabilistically verify a pair of functions with much
15#
發(fā)表于 2025-3-24 02:46:44 | 只看該作者
,OKFDDs — Algorithms, Applications and Extensions,nctions. OKFDDs are a generalization of Ordered Binary Decision Diagrams and Ordered Functional Decision Diagrams and as such provide a more compact representation of the functions than either of the two decision diagrams. We review basic properties of OKFDDs and study methods for their efficient re
16#
發(fā)表于 2025-3-24 08:06:12 | 只看該作者
17#
發(fā)表于 2025-3-24 11:09:41 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:26 | 只看該作者
Satisfiability Problems for OFDDs,UNT. We prove that SAT-ALL has a running time linear in the product of the number of satisfying assignments and the size of the given OFDD. Counting the satisfying assignments in an OFDD is proved to be #.-complete, and thus not possible in polynomial time unless P=NP.
19#
發(fā)表于 2025-3-24 19:01:26 | 只看該作者
Complexity Theoretical Aspects of OFDDs,or to OBDDs (ordered binary decision diagrams). Most of the complexity theoretical problems have been solved for OBDDs. Here some results for OFDDs are proved. It is NP-complete to decide whether a function represented by some OFDD can be represented by an OFDD of size s using another variable order
20#
發(fā)表于 2025-3-25 00:23:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静安区| 莫力| 长春市| 那曲县| 万载县| 仁化县| 榆社县| 唐海县| 钟山县| 青岛市| 滁州市| 阿拉善右旗| 公安县| 鄂尔多斯市| 黔南| 襄樊市| 含山县| 富宁县| 青海省| 普宁市| 阳城县| 阿图什市| 海口市| 义乌市| 南充市| 朔州市| 弥勒县| 柳林县| 海原县| 鄂州市| 福海县| 新建县| 安泽县| 平邑县| 安义县| 鄂尔多斯市| 茌平县| 舞阳县| 寿光市| 西乌珠穆沁旗| 泰来县|