找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of Discrete Functions; Tsutomu Sasao,Masahiro Fujita Book 1996 Kluwer Academic Publishers 1996 CAD.algorithms.complexity.c

[復(fù)制鏈接]
樓主: commotion
11#
發(fā)表于 2025-3-23 12:21:16 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:22 | 只看該作者
Multi-Terminal Binary Decision Diagrams and Hybrid Decision Diagrams,ow multi-terminal binary decision diagrams (MTBDDs) can be used to represent such functions concisely. The Walsh transform and Reed-Muller transform have numerous applications in computer-aided design, but the usefulness of these techniques in practice has been limited by the size of the binary valu
13#
發(fā)表于 2025-3-23 18:07:02 | 只看該作者
Edge Valued Binary Decision Diagrams,functions (PBF). .s are particularly useful when both arithmetic and Boolean operations are required. We describe a general algorithm on .s for performing any binary operation that is closed over the integers. Next, we discuss the relation between the probability expression of a Boolean function and
14#
發(fā)表于 2025-3-24 00:18:52 | 只看該作者
Arithmetic Transform of Boolean Functions,ns. Such arithmetic transformations can give us new insight into solving some interesting problems. For example, the transformed functions can be easily evaluated (simulated) on integers or real numbers. Through such arithmetic simulation we can probabilistically verify a pair of functions with much
15#
發(fā)表于 2025-3-24 02:46:44 | 只看該作者
,OKFDDs — Algorithms, Applications and Extensions,nctions. OKFDDs are a generalization of Ordered Binary Decision Diagrams and Ordered Functional Decision Diagrams and as such provide a more compact representation of the functions than either of the two decision diagrams. We review basic properties of OKFDDs and study methods for their efficient re
16#
發(fā)表于 2025-3-24 08:06:12 | 只看該作者
17#
發(fā)表于 2025-3-24 11:09:41 | 只看該作者
18#
發(fā)表于 2025-3-24 17:15:26 | 只看該作者
Satisfiability Problems for OFDDs,UNT. We prove that SAT-ALL has a running time linear in the product of the number of satisfying assignments and the size of the given OFDD. Counting the satisfying assignments in an OFDD is proved to be #.-complete, and thus not possible in polynomial time unless P=NP.
19#
發(fā)表于 2025-3-24 19:01:26 | 只看該作者
Complexity Theoretical Aspects of OFDDs,or to OBDDs (ordered binary decision diagrams). Most of the complexity theoretical problems have been solved for OBDDs. Here some results for OFDDs are proved. It is NP-complete to decide whether a function represented by some OFDD can be represented by an OFDD of size s using another variable order
20#
發(fā)表于 2025-3-25 00:23:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 丹巴县| 宁陵县| 涞源县| 清涧县| 玉山县| 安龙县| 扎鲁特旗| 章丘市| 泸溪县| 信宜市| 开阳县| 凌云县| 吉首市| 陆川县| 交城县| 开原市| 石狮市| 五峰| 清镇市| 周口市| 霞浦县| 保德县| 镇宁| 崇阳县| 荆门市| 乌拉特后旗| 中卫市| 盘山县| 博爱县| 类乌齐县| 上栗县| 建水县| 金门县| 凭祥市| 色达县| 新民市| 雷州市| 平果县| 隆回县| 长顺县|