找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation of Lie Groups and Special Functions; Volume 2: Class I Re N. Ja. Vilenkin,A. U. Klimyk Book 1993 Springer Science+Business M

[復(fù)制鏈接]
查看: 28511|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:15:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions
副標(biāo)題Volume 2: Class I Re
編輯N. Ja. Vilenkin,A. U. Klimyk
視頻videohttp://file.papertrans.cn/828/827439/827439.mp4
叢書(shū)名稱(chēng)Mathematics and its Applications
圖書(shū)封面Titlebook: Representation of Lie Groups and Special Functions; Volume 2: Class I Re N. Ja. Vilenkin,A. U. Klimyk Book 1993 Springer Science+Business M
出版日期Book 1993
關(guān)鍵詞Group representation; Jacobi; differential equation; integral transform; lie group
版次1
doihttps://doi.org/10.1007/978-94-017-2883-6
isbn_softcover978-90-481-4103-6
isbn_ebook978-94-017-2883-6Series ISSN 0169-6378
issn_series 0169-6378
copyrightSpringer Science+Business Media Dordrecht 1993
The information of publication is updating

書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions影響因子(影響力)




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions被引頻次




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions被引頻次學(xué)科排名




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions年度引用




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions年度引用學(xué)科排名




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions讀者反饋




書(shū)目名稱(chēng)Representation of Lie Groups and Special Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:59:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:42:16 | 只看該作者
,Representations of Groups, Related to ,(n?1), in Non-Canonical Bases, Special Functions, and IntegrIn the preceding chapter we have considered spherical functions of irreducible representations of .(.) and of related groups with respect to the canonical basis . in ..
地板
發(fā)表于 2025-3-22 08:05:17 | 只看該作者
,Special Functions Connected with the Groups ,(,), ,(,?1,1) and ,(,?1),The groups .(n), .(n - 1,1) and related homogeneous spaces.
5#
發(fā)表于 2025-3-22 09:58:04 | 只看該作者
6#
發(fā)表于 2025-3-22 16:44:59 | 只看該作者
Special Functions Connected with ,(,) and with Related Groups,l transformations in .., that is, linear transformations in .. preserving (.), and .(.) denotes the subgroup of unimodular transformations from .(.). The groups .(.) and .(.) are compact, .(.) is connected and .(.)consists of two connected components .(.)and ...(.), where .. = diag(1,...,1, ?1).
7#
發(fā)表于 2025-3-22 21:06:29 | 只看該作者
978-90-481-4103-6Springer Science+Business Media Dordrecht 1993
8#
發(fā)表于 2025-3-22 21:29:24 | 只看該作者
Representation of Lie Groups and Special Functions978-94-017-2883-6Series ISSN 0169-6378
9#
發(fā)表于 2025-3-23 01:43:29 | 只看該作者
0169-6378 Overview: 978-90-481-4103-6978-94-017-2883-6Series ISSN 0169-6378
10#
發(fā)表于 2025-3-23 09:22:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台州市| 津市市| 清原| 环江| 苏尼特右旗| 洪江市| 泽州县| 鄂托克前旗| 阳朔县| 岑巩县| 浦江县| 五家渠市| 敖汉旗| 奉化市| 涟水县| 社旗县| 惠来县| 梅州市| 淅川县| 青铜峡市| 晋城| 郧西县| 台中市| 甘泉县| 财经| 平遥县| 阿巴嘎旗| 新晃| 洪江市| 阿瓦提县| 河源市| 深泽县| 镇康县| 西华县| 太谷县| 昔阳县| 邳州市| 治多县| 南靖县| 冷水江市| 海晏县|