找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation of Lie Groups and Special Functions; Volume 1: Simplest L N. Ja. Vilenkin,A. U. Klimyk Book 1991 Springer Science+Business M

[復(fù)制鏈接]
樓主: T-Lymphocyte
11#
發(fā)表于 2025-3-23 13:40:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:32:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:15 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:55 | 只看該作者
15#
發(fā)表于 2025-3-24 03:15:56 | 只看該作者
Representations of Groups of Third Order Triangular Matrices, the Confluent Hypergeometric FunctionIn section 5.1 we shall study representations of the group . of third order real triangular matrices ..
16#
發(fā)表于 2025-3-24 09:40:18 | 只看該作者
Representations of the Groups ,(2), ,(1,1) and Related Special Functions: Legendre, Jacobi, ChebyshThe group .(2) consists of unimodular unitary matrices of the second order, i.e. of matrices .. Therefore, each element . of .(2) is uniquely determined by a pair of complex numbers α and β such that ∣α∣.+∣β∣.=1.
17#
發(fā)表于 2025-3-24 12:36:56 | 只看該作者
Clebsch-Gordan Coefficients, Racah Coefficients, and Special Functions,In Section 6.2.1 we have constructed the realization of irreducible representations . of the group .(2) in the space ?. of homogeneous polynomials in two variables of degree 2?.
18#
發(fā)表于 2025-3-24 18:54:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:49 | 只看該作者
https://doi.org/10.1007/978-94-011-3538-2Group representation; Group theory; commutative group; functional analysis; harmonic analysis; integral t
20#
發(fā)表于 2025-3-24 23:52:05 | 只看該作者
Elements of the Theory of Lie Groups and Lie Algebras, will be given without proofs. They can be found, for example, in the books [5, 21, 22, 33, 38, 58]. The “null” section contains the information from Algebra, Topology, and Functional Analysis which is used in the present book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 22:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 井陉县| 颍上县| 浦江县| 镇江市| 永春县| 棋牌| 大埔县| 太原市| 水城县| 龙里县| 昌宁县| 蒙阴县| 嘉黎县| 乌拉特中旗| 克什克腾旗| 钟山县| 襄汾县| 邻水| 龙海市| 建瓯市| 海丰县| 平安县| 秭归县| 和静县| 托克托县| 张家界市| 九龙城区| 那坡县| 阳新县| 华蓥市| 中方县| 万年县| 宁南县| 陇南市| 介休市| 肥东县| 连城县| 卓资县| 通州市| 崇明县|