找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation of Lie Groups and Special Functions; Volume 3: Classical N. Ja. Vilenkin,A. U. Klimyk Book 1992 Springer Science+Business M

[復制鏈接]
樓主: oxidation
11#
發(fā)表于 2025-3-23 11:27:35 | 只看該作者
Semisimple Lie Groups and Related Homogeneous Spaces,al simple Lie groups and of corresponding inhomogeneous groups. In the next chapters we study special functions related to non-degenerate series of representations. These special functions depend on many variables and in some cases it is convenient to consider them as functions of matrix argument or
12#
發(fā)表于 2025-3-23 16:44:57 | 只看該作者
Group Representations and Special Functions of a Matrix Argument, it let us note that every matrix Λ ∈ P.(.) is representable in the form Λ = .*, where . ∈ ._(., .). and . is the group of diagonal matrices diag (..,... , ..) with .. > 0. We transfer the operation of group multiplication, defined in ._(., .)., into the set P.(.). Namely, for Λ = ....*, . = .... we
13#
發(fā)表于 2025-3-23 21:52:31 | 只看該作者
,Representations in the Gel’fand-Tsetlin Basis and Special Functions,of this representation. The restriction of .. onto the subgroup .(. ? 1, ?) is reducible. It decomposes into the direct sum of all irreducible representations .. of .(. ? 1, ?) with highest weights .′ = (..,..., ..) for which the betweenness conditions . are satisfied. Each of these representations
14#
發(fā)表于 2025-3-24 00:13:03 | 只看該作者
15#
發(fā)表于 2025-3-24 06:13:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:35:48 | 只看該作者
978-3-031-64599-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
17#
發(fā)表于 2025-3-24 13:58:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:21 | 只看該作者
0302-9743 France, during April 20-22, 2022.?.The 31 papers included in this book were carefully reviewed and selected from 73 submissions. They deal with high quality, novel research in intelligent data analysis.?.978-3-031-01332-4978-3-031-01333-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
19#
發(fā)表于 2025-3-24 22:19:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀仁县| 浮梁县| 临潭县| 社旗县| 普陀区| 新安县| 翁源县| 雷州市| 汶上县| 榆树市| 襄汾县| 北票市| 乃东县| 志丹县| 安化县| 柳河县| 山阴县| 安远县| 三河市| 德令哈市| 禹城市| 台州市| 昂仁县| 大冶市| 阿拉善盟| 伊吾县| 张家界市| 临颍县| 轮台县| 黄浦区| 桦南县| 平塘县| 肃北| 瑞金市| 增城市| 富顺县| 博客| 祁门县| 三门峡市| 越西县| 彩票|