找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation of Lie Groups and Special Functions; Volume 3: Classical N. Ja. Vilenkin,A. U. Klimyk Book 1992 Springer Science+Business M

[復(fù)制鏈接]
樓主: oxidation
11#
發(fā)表于 2025-3-23 11:27:35 | 只看該作者
Semisimple Lie Groups and Related Homogeneous Spaces,al simple Lie groups and of corresponding inhomogeneous groups. In the next chapters we study special functions related to non-degenerate series of representations. These special functions depend on many variables and in some cases it is convenient to consider them as functions of matrix argument or
12#
發(fā)表于 2025-3-23 16:44:57 | 只看該作者
Group Representations and Special Functions of a Matrix Argument, it let us note that every matrix Λ ∈ P.(.) is representable in the form Λ = .*, where . ∈ ._(., .). and . is the group of diagonal matrices diag (..,... , ..) with .. > 0. We transfer the operation of group multiplication, defined in ._(., .)., into the set P.(.). Namely, for Λ = ....*, . = .... we
13#
發(fā)表于 2025-3-23 21:52:31 | 只看該作者
,Representations in the Gel’fand-Tsetlin Basis and Special Functions,of this representation. The restriction of .. onto the subgroup .(. ? 1, ?) is reducible. It decomposes into the direct sum of all irreducible representations .. of .(. ? 1, ?) with highest weights .′ = (..,..., ..) for which the betweenness conditions . are satisfied. Each of these representations
14#
發(fā)表于 2025-3-24 00:13:03 | 只看該作者
15#
發(fā)表于 2025-3-24 06:13:38 | 只看該作者
16#
發(fā)表于 2025-3-24 08:35:48 | 只看該作者
978-3-031-64599-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
17#
發(fā)表于 2025-3-24 13:58:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:26:21 | 只看該作者
0302-9743 France, during April 20-22, 2022.?.The 31 papers included in this book were carefully reviewed and selected from 73 submissions. They deal with high quality, novel research in intelligent data analysis.?.978-3-031-01332-4978-3-031-01333-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
19#
發(fā)表于 2025-3-24 22:19:40 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙川县| 阳城县| 普格县| 师宗县| 开原市| 双柏县| 辽源市| 依兰县| 株洲县| 湛江市| 嘉鱼县| 莱阳市| 临澧县| 泰安市| 庐江县| 南陵县| 安国市| 定兴县| 隆林| 贡山| 芦溪县| 饶河县| 昭通市| 株洲市| 若羌县| 和平县| 象山县| 田东县| 阳泉市| 清镇市| 汝阳县| 乐昌市| 霍州市| 峡江县| 临武县| 安康市| 巴林右旗| 金山区| 电白县| 桂平市| 汤阴县|