找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation and Control of Infinite Dimensional Systems; Alain Bensoussan,Giuseppe Prato,Sanjoy K. Mitter Book 2007Latest edition Birkh

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 21:24:03 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:25 | 只看該作者
Unbounded Control Operators: Hyperbolic Equations With Control on the Boundaryse state .(·) is the solution of the following equation: . where . ∈ .(0, .;.) and .: .(.) ? . → . generates a strongly continuous group on .. We identify the elements of .′ with those of . so that the linear operator (.*)*: . → .(.*)′ is a linear extension of the linear operator .: .(.) → .. As in
33#
發(fā)表于 2025-3-27 05:34:38 | 只看該作者
Unbounded Control Operators: Parabolic Equations With Control on the Boundaryume that . Clearly, if hypotheses . hold, then the hypotheses . of Chapter 2 of Part IV are fulfilled with . = 0. If α ≤ 1/2, we will choose once and for all a number β belonging to ]1 ? α/2, 1 ? α/2[. We want to minimize the cost function: . over all controls . ∈ .(0,∞;.) subject to the differentia
34#
發(fā)表于 2025-3-27 11:26:00 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:33 | 只看該作者
Book 2007Latest editiond of Control of in?nite dim- sional systems. This was motivated by a whole range of challenging appli- tions arising from new phenomenologicalstudies, technologicaldevelopments, and more stringent design requirements. At the same time, researchers and advanced engineers have been steadily using an i
36#
發(fā)表于 2025-3-27 21:32:11 | 只看該作者
Unbounded Control Operators: Hyperbolic Equations With Control on the Boundary.?.)., where . ∈ . and λ. is an element in ρ(.). More precisely, following . and . [1, 2, 11], we shall assume that . If assumptions . hold, then we can give a precise meaning to the state equation. We have in fact the following result due to . and
37#
發(fā)表于 2025-3-28 00:57:38 | 只看該作者
Unbounded Control Operators: Parabolic Equations With Control on the Boundaryl equation constraint (1.1). We say that the control . ∈ .(0,∞;.) is . if .(.) < ∞. The definitions of optimal control, optimal state, and optimal pair are the same as in Chapter 1. When, for any . ∈ ., an admissible control exists, we say that (.) is C-stabilizable.
38#
發(fā)表于 2025-3-28 02:59:49 | 只看該作者
39#
發(fā)表于 2025-3-28 08:32:51 | 只看該作者
40#
發(fā)表于 2025-3-28 11:52:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乡城县| 宜川县| 和平区| 金塔县| 阿坝| 东明县| 花莲县| 青铜峡市| 松原市| 上林县| 怀化市| 乌拉特中旗| 定安县| 福鼎市| 台中市| 丹东市| 高陵县| 梁山县| 防城港市| 忻州市| 墨脱县| 岗巴县| 儋州市| 科尔| 宜兴市| 汶川县| 石楼县| 道孚县| 若尔盖县| 沂水县| 黄龙县| 云龙县| 祁阳县| 家居| 赣州市| 璧山县| 泽普县| 承德市| 华安县| 垫江县| 桃园市|