找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory, Mathematical Physics, and Integrable Systems; In Honor of Nicolai Anton Alekseev,Edward Frenkel,Milen Yakimov Book

[復制鏈接]
樓主: 大腦
31#
發(fā)表于 2025-3-26 22:25:29 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:47:55 | 只看該作者
,Quantum Periodicity and Kirillov–Reshetikhin Modules,We give a proof of the periodicity of quantum .-systems of type ..?×?.. with certain spiral boundary conditions. Our proof is based on the categorification of the .-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.
34#
發(fā)表于 2025-3-27 09:47:37 | 只看該作者
A Note on the E-Polynomials of a Stratification of the Hilbert Scheme of Points,The stratification associated with the number of generators of the ideals of the punctual Hilbert scheme of points on the affine plane has been studied since the 1970s. In this paper, we present an elegant formula for the E-polynomials of these strata.
35#
發(fā)表于 2025-3-27 15:27:57 | 只看該作者
,Irreducibility of the Wysiwyg Representations of Thompson’s Groups,We prove irreducibility and mutual inequivalence for certain unitary representations of R. Thompson’s groups F and T.
36#
發(fā)表于 2025-3-27 21:38:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:14 | 只看該作者
Tensor Product of the Fock Representation with Its Dual and the Deligne Category,We describe .-module structure of the tensor product of the Fock representation and its shifted dual using action of . on the abelian envelope of the Deligne’s category .(.).
38#
發(fā)表于 2025-3-28 06:06:58 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
https://doi.org/10.1007/978-3-030-78148-4Quantum Groups; Representation Theory; Categorifications; Kac-Moody Algebras; Invariants of knots and 3-
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-29 17:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连南| 加查县| 吉隆县| 江永县| 南郑县| 苍山县| 永兴县| 慈溪市| 大同市| 永川市| 建阳市| 三原县| 栾川县| 若羌县| 凤冈县| 南安市| 宜昌市| 乌什县| 海丰县| 逊克县| 安阳县| 左云县| 新宁县| 垦利县| 虹口区| 定西市| 东莞市| 广灵县| 郴州市| 垦利县| 昭苏县| 衡南县| 旅游| 汽车| 三门峡市| 平罗县| 怀宁县| 仁寿县| 宁强县| 新晃| 新沂市|