找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory, Mathematical Physics, and Integrable Systems; In Honor of Nicolai Anton Alekseev,Edward Frenkel,Milen Yakimov Book

[復制鏈接]
樓主: 大腦
31#
發(fā)表于 2025-3-26 22:25:29 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:47:55 | 只看該作者
,Quantum Periodicity and Kirillov–Reshetikhin Modules,We give a proof of the periodicity of quantum .-systems of type ..?×?.. with certain spiral boundary conditions. Our proof is based on the categorification of the .-system in terms of the representation theory of quantum affine algebras, more precisely on relations between classes of Kirillov–Reshetikhin modules and of evaluation modules.
34#
發(fā)表于 2025-3-27 09:47:37 | 只看該作者
A Note on the E-Polynomials of a Stratification of the Hilbert Scheme of Points,The stratification associated with the number of generators of the ideals of the punctual Hilbert scheme of points on the affine plane has been studied since the 1970s. In this paper, we present an elegant formula for the E-polynomials of these strata.
35#
發(fā)表于 2025-3-27 15:27:57 | 只看該作者
,Irreducibility of the Wysiwyg Representations of Thompson’s Groups,We prove irreducibility and mutual inequivalence for certain unitary representations of R. Thompson’s groups F and T.
36#
發(fā)表于 2025-3-27 21:38:32 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:14 | 只看該作者
Tensor Product of the Fock Representation with Its Dual and the Deligne Category,We describe .-module structure of the tensor product of the Fock representation and its shifted dual using action of . on the abelian envelope of the Deligne’s category .(.).
38#
發(fā)表于 2025-3-28 06:06:58 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
https://doi.org/10.1007/978-3-030-78148-4Quantum Groups; Representation Theory; Categorifications; Kac-Moody Algebras; Invariants of knots and 3-
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-29 17:29
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
侯马市| 卢龙县| 宾阳县| 濮阳市| 柘城县| 霍州市| 嵊泗县| 姚安县| 新乡市| 平南县| 贵德县| 敖汉旗| 柳河县| 宜兰县| 综艺| 彭州市| 襄汾县| 克东县| 建德市| 桓台县| 吉木萨尔县| 盈江县| 苍梧县| 青田县| 曲周县| 全州县| SHOW| 太湖县| 桐梓县| 新干县| 金阳县| 巴林左旗| 平武县| 古浪县| 乡宁县| 禹州市| 潮州市| 文山县| 洛浦县| 兴仁县| 恭城|