找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Solvable Lie Groups and Related Topics; Ali Baklouti,Hidenori Fujiwara,Jean Ludwig Book 2021 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 馬用
11#
發(fā)表于 2025-3-23 10:51:50 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:58 | 只看該作者
13#
發(fā)表于 2025-3-23 18:26:06 | 只看該作者
Representation Theory of Solvable Lie Groups and Related Topics
14#
發(fā)表于 2025-3-23 22:59:29 | 只看該作者
Intertwining Operators for Irreducible Representations of an Exponential Solvable Lie Group,When we study problems in representation theory, it is often very useful to construct an intertwining operator between two equivalent unitary representations. A prototype arises in the following situation. Let . be an exponential solvable Lie group with Lie algebra . and . two (real) polarizations of . at . verifying the Pukanszky condition.
15#
發(fā)表于 2025-3-24 02:48:18 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:19 | 只看該作者
Bounded Irreducible Representations,Let . be an exponential solvable Lie group. In this chapter we characterize bounded, topologically irreducible Banach-space representations of . using triples (?Ω, ., ∥∥), where . is a coadjoint orbit of ., . is a topologically irreducible representation of the algebra . for a certain . and a weight . on ., and ∥∥ is a so-called extension norm.
18#
發(fā)表于 2025-3-24 18:45:11 | 只看該作者
Ali Baklouti,Hidenori Fujiwara,Jean LudwigThis book is unique in the domain of representation theory of solvable Lie groups.Solves many problems in relation with many other research fields.Appears as a perfect tool for researchers and beginne
19#
發(fā)表于 2025-3-24 21:45:34 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/r/image/827418.jpg
20#
發(fā)表于 2025-3-25 02:57:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三河市| 禄劝| 崇左市| 同江市| 皋兰县| 岑溪市| 金阳县| 达孜县| 荥经县| 迭部县| 阳泉市| 莲花县| 灵宝市| 从江县| 泾阳县| 泾川县| 建始县| 建瓯市| 崇明县| 昭苏县| 新邵县| 安义县| 襄垣县| 获嘉县| 沿河| 新干县| 游戏| 广昌县| 阿拉尔市| 西吉县| 自贡市| 长治县| 博兴县| 岱山县| 腾冲县| 石棉县| 和硕县| 平阳县| 日喀则市| 麻江县| 长泰县|