找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Solvable Lie Groups and Related Topics; Ali Baklouti,Hidenori Fujiwara,Jean Ludwig Book 2021 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 馬用
11#
發(fā)表于 2025-3-23 10:51:50 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:58 | 只看該作者
13#
發(fā)表于 2025-3-23 18:26:06 | 只看該作者
Representation Theory of Solvable Lie Groups and Related Topics
14#
發(fā)表于 2025-3-23 22:59:29 | 只看該作者
Intertwining Operators for Irreducible Representations of an Exponential Solvable Lie Group,When we study problems in representation theory, it is often very useful to construct an intertwining operator between two equivalent unitary representations. A prototype arises in the following situation. Let . be an exponential solvable Lie group with Lie algebra . and . two (real) polarizations of . at . verifying the Pukanszky condition.
15#
發(fā)表于 2025-3-24 02:48:18 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:19 | 只看該作者
Bounded Irreducible Representations,Let . be an exponential solvable Lie group. In this chapter we characterize bounded, topologically irreducible Banach-space representations of . using triples (?Ω, ., ∥∥), where . is a coadjoint orbit of ., . is a topologically irreducible representation of the algebra . for a certain . and a weight . on ., and ∥∥ is a so-called extension norm.
18#
發(fā)表于 2025-3-24 18:45:11 | 只看該作者
Ali Baklouti,Hidenori Fujiwara,Jean LudwigThis book is unique in the domain of representation theory of solvable Lie groups.Solves many problems in relation with many other research fields.Appears as a perfect tool for researchers and beginne
19#
發(fā)表于 2025-3-24 21:45:34 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/r/image/827418.jpg
20#
發(fā)表于 2025-3-25 02:57:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳江县| 盘锦市| 潜江市| 柏乡县| 长春市| 杭州市| 滕州市| 柳林县| 上饶市| 中超| 嘉黎县| 台江县| 柳河县| 辉南县| 开化县| 镇坪县| 运城市| 安岳县| 新晃| 祁东县| 阿瓦提县| 扎兰屯市| 高阳县| 龙川县| 黄平县| 普兰县| 三河市| 嵊州市| 黑水县| 平原县| 大姚县| 屯门区| 杨浦区| 新乡县| 耒阳市| 荔浦县| 周宁县| 平阴县| 柳河县| 延川县| 祁连县|