找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Solvable Lie Groups and Related Topics; Ali Baklouti,Hidenori Fujiwara,Jean Ludwig Book 2021 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 馬用
11#
發(fā)表于 2025-3-23 10:51:50 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:58 | 只看該作者
13#
發(fā)表于 2025-3-23 18:26:06 | 只看該作者
Representation Theory of Solvable Lie Groups and Related Topics
14#
發(fā)表于 2025-3-23 22:59:29 | 只看該作者
Intertwining Operators for Irreducible Representations of an Exponential Solvable Lie Group,When we study problems in representation theory, it is often very useful to construct an intertwining operator between two equivalent unitary representations. A prototype arises in the following situation. Let . be an exponential solvable Lie group with Lie algebra . and . two (real) polarizations of . at . verifying the Pukanszky condition.
15#
發(fā)表于 2025-3-24 02:48:18 | 只看該作者
16#
發(fā)表于 2025-3-24 10:01:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:19 | 只看該作者
Bounded Irreducible Representations,Let . be an exponential solvable Lie group. In this chapter we characterize bounded, topologically irreducible Banach-space representations of . using triples (?Ω, ., ∥∥), where . is a coadjoint orbit of ., . is a topologically irreducible representation of the algebra . for a certain . and a weight . on ., and ∥∥ is a so-called extension norm.
18#
發(fā)表于 2025-3-24 18:45:11 | 只看該作者
Ali Baklouti,Hidenori Fujiwara,Jean LudwigThis book is unique in the domain of representation theory of solvable Lie groups.Solves many problems in relation with many other research fields.Appears as a perfect tool for researchers and beginne
19#
發(fā)表于 2025-3-24 21:45:34 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/r/image/827418.jpg
20#
發(fā)表于 2025-3-25 02:57:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东宁县| 连南| 邯郸县| 比如县| 东乌| 长白| 秦安县| 乐山市| 丘北县| 新干县| 襄樊市| 孝感市| 乌兰浩特市| 乌兰察布市| 聂拉木县| 泽普县| 朝阳市| 双城市| 驻马店市| 瑞金市| 阿克苏市| 洱源县| 福贡县| 绍兴县| 湘乡市| 垦利县| 博爱县| 望江县| 喀喇沁旗| 扶余县| 建始县| 屯门区| 耿马| 中西区| 陈巴尔虎旗| 旬阳县| 陆丰市| 芜湖市| 浦江县| 集贤县| 金川县|