找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Reductive Groups; Proceedings of the U P. C. Trombi Conference proceedings 1983 Birkh?user Boston, Inc. 1983 Group

[復(fù)制鏈接]
樓主: 驅(qū)逐
21#
發(fā)表于 2025-3-25 04:22:16 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:10 | 只看該作者
23#
發(fā)表于 2025-3-25 14:57:38 | 只看該作者
,Completeness of Poincaré Series for Automorphic Forms Associated to the Integrable Discrete Series,H.(D; .) by an integrable discrete series representation, where s is the complex dimension of the maximal compact subvariety K/V in D, then every Г-automorphic L. cohomology class ψ∈ H. (ГD; .), 1 ? p ? ∞, is represented by a Poincaré series
24#
發(fā)表于 2025-3-25 16:20:13 | 只看該作者
Conference proceedings 1983of the Department of Mathematics, University of Utah. Funding for the conference was provided by the National Science Foundation. The text includes a number of original papers together with expository articles on work already in print. It is hoped that the volume will be of use to both experts in th
25#
發(fā)表于 2025-3-25 22:01:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:44 | 只看該作者
A Classification of Unitary Highest Weight Modules,lgebra of G. A unitary representation (π,H) of G such that the underlying (?K) — module is an irreducible quotient of a Verma module for ?. is called a unitary highest weight module. Harish-Chandra ([4],[5]) has shown that G admits nontrivial unitary highest weight modules precisely when (G,K) is a
27#
發(fā)表于 2025-3-26 08:00:43 | 只看該作者
28#
發(fā)表于 2025-3-26 12:15:48 | 只看該作者
29#
發(fā)表于 2025-3-26 14:26:00 | 只看該作者
,All Supercuspidal Representations of SL? over a P-Adic Field are Induced,ions of the absolute Weil group W. of F should parameterize naturally the admissible, irreducible (nonspecial) representations of G, and that, in particular, the ., n-dimensional representations of W. should correspond under this parameterization to the irreducible supercuspidal representations of G
30#
發(fā)表于 2025-3-26 17:36:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石狮市| 天镇县| 元氏县| 六安市| 易门县| 郑州市| 津南区| 怀安县| 手游| 峨山| 边坝县| 商河县| 金门县| 奎屯市| 沅江市| 新竹市| 修水县| 尼木县| 涞水县| 读书| 东乡县| 兴海县| 嘉祥县| 临泽县| 林州市| 大荔县| 翼城县| 雅安市| 榕江县| 台北市| 天水市| 宁蒗| 长垣县| 唐河县| 莲花县| 常德市| 周至县| 石泉县| 芦山县| 泗水县| 林口县|