找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Finite Groups: a Guidebook; David A. Craven Textbook 2019 Springer Nature Switzerland AG 2019 Group representatio

[復(fù)制鏈接]
樓主: mentor
11#
發(fā)表于 2025-3-23 10:28:12 | 只看該作者
Representations of Symmetric Groups,ves the irreducible character degrees for symmetric groups. By contrast, the irreducible Brauer character degrees are not known. The branching rule describes the induction of ordinary characters of .. to .., and again in characteristic . things are much more complicated. We then switch to characteri
12#
發(fā)表于 2025-3-23 16:19:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:10 | 只看該作者
The Basics,ontents of a typical undergraduate course at a U.K. university; orthogonality relations, tensor products, the Artin–Wedderburn theorem, and so on. We then shift to finite group theory. The first few paragraphs give some standard facts to fix our notation, and we then talk briefly about simple groups and their entourage.
14#
發(fā)表于 2025-3-24 00:59:57 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:43 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:01 | 只看該作者
18#
發(fā)表于 2025-3-24 15:56:11 | 只看該作者
Blocks with Non-cyclic Defect Groups,-groups, before looking at the Morita equivalence classes of blocks. We then give the possible Morita equivalence classes of blocks for semidihedral and quaternion defect groups. The last topic is nilpotent blocks, which are those Morita equivalent to the group algebra ., where . is the defect group of the block.
19#
發(fā)表于 2025-3-24 20:57:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临海市| 萍乡市| 嘉祥县| 兴隆县| 泰州市| 睢宁县| 太保市| 泾源县| 义马市| 金堂县| 镇远县| 阿拉善盟| 磴口县| 丰台区| 雷州市| 赤峰市| 六枝特区| 微山县| 武隆县| 门源| 金湖县| 阳山县| 庄浪县| 阜城县| 肇庆市| 沁水县| 新郑市| 元阳县| 宝应县| 商水县| 勐海县| 洛扎县| 阳曲县| 新巴尔虎左旗| 昌平区| 宣化县| 方正县| 南雄市| 蕲春县| 西林县| 米易县|