找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory and Complex Geometry; Neil Chriss,Victor Ginzburg Book 2010 Birkh?user Boston 2010 D-modules.K-theory.algebraic geom

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 03:52:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:24:25 | 只看該作者
Complex Semisimple Groups,We begin this section by reviewing some basic facts about semisimple groups and Lie algebras which we will need in the rest of this book. For further information the reader is referred to [Bour], [Bo3], [Hum], [Se1], and [Di].
23#
發(fā)表于 2025-3-25 12:20:11 | 只看該作者
24#
發(fā)表于 2025-3-25 19:17:32 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:22 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
26#
發(fā)表于 2025-3-26 03:14:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:54 | 只看該作者
,Hecke Algebras and K–Theory,rking with lattices instead of vector spaces. This makes axiom 3.1.22(3) superfluous. Thus it is assumed only that, in addition to the above data, a subset .. ? .., called the dual root system, and a specified bijection . ? .., α ? ? are given such that the following three properties hold.
28#
發(fā)表于 2025-3-26 12:21:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:38:19 | 只看該作者
30#
發(fā)表于 2025-3-26 18:00:18 | 只看該作者
Springer Theory for , (sl,),ur point is that absolutely the same machinery can be applied to construct representations of sl.(C) and perhaps other semisimple Lie algebras, cf. [Na2]. Many of the objects we use for studying the sl.(C)-case are analogous to the objects in the Weyl group case.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南漳县| 庄浪县| 扎鲁特旗| 洪洞县| 泰州市| 临潭县| 宁明县| 莎车县| 平江县| 五寨县| 大姚县| 本溪| 会昌县| 图片| 全州县| 右玉县| 九龙坡区| 宁化县| 石家庄市| 成都市| 砀山县| 夹江县| 江陵县| 沾益县| 台南市| 宁阳县| 宣汉县| 普兰店市| 垫江县| 大宁县| 邯郸市| 诸城市| 泽库县| 丰原市| 陇南市| 平定县| 玛多县| 奉节县| 定陶县| 河西区| 阿尔山市|