找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory and Automorphic Forms; Toshiyuki Kobayashi,Wilfried Schmid,Jae-Hyun Yang Book 2008 Birkh?user Boston 2008 Prime.auto

[復(fù)制鏈接]
樓主: 憑票入場
21#
發(fā)表于 2025-3-25 05:08:26 | 只看該作者
Freydoon Shahidirmation formulation of the plasticity theory and general kinematic hypotheses (SAE AE-22, §8.3.33). Two main types of helical springs—compression springs and torsion springs—are studied. For the first type (axial compression or tension springs), the spring wire is twisted. The basic approach neglect
22#
發(fā)表于 2025-3-25 08:17:18 | 只看該作者
Ken-Ichi Yoshikawaail at low amplitudes of cyclic stresses. The question is how to calculate the failure probability as a function of the stress amplitude. The answer to this question results from the study of experimental fatigue life data. The experimental data show different behavior in the regions of low and high
23#
發(fā)表于 2025-3-25 15:33:54 | 只看該作者
On Liftings of Holomorphic Modular Forms, Siegel modular case, and the second case is the hermitian modular case. The Fourier coefficients of our liftings are closely related to those of Eisenstein series. When the degree is 2, our lifting reduces to the classical Saito–Kurokawa lifting or hermitian Maass lifting.
24#
發(fā)表于 2025-3-25 17:30:33 | 只看該作者
Langlands Functoriality Conjecture and Number Theory, 2-dimensional complex representations of Galois groups of number fields, lattice point problems, Ramanujan– Selberg and Sato–Tate conjectures.We conclude by explaining how these recent developments are established.
25#
發(fā)表于 2025-3-25 23:34:47 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:22 | 只看該作者
27#
發(fā)表于 2025-3-26 08:22:01 | 只看該作者
28#
發(fā)表于 2025-3-26 10:21:21 | 只看該作者
29#
發(fā)表于 2025-3-26 13:08:14 | 只看該作者
Discriminant of Certain K3 Surfaces,In this article we study the discriminant of those .3 surfaces with involution which were introduced and investigated by Matsumoto, Sasaki, and Yoshida. We extend several classical results on the discriminant of elliptic curves to the discriminant of Matsumoto– Sasaki–Yoshida’s .3 surfaces.
30#
發(fā)表于 2025-3-26 18:59:11 | 只看該作者
Toshiyuki Kobayashi,Wilfried Schmid,Jae-Hyun YangInterdisciplinary approach to the ever expanding fields of representation theory and automorphic forms.Written by leading mathematicians.Tracks recent progress in representation theory and automorphic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍山县| 如皋市| 广灵县| 宜兴市| 刚察县| 绥中县| 登封市| 德清县| 乐清市| 安多县| 芒康县| 睢宁县| 石嘴山市| 平定县| 朝阳市| 神农架林区| 临沭县| 温州市| 罗甸县| 玉环县| 辽阳县| 沧源| 团风县| 方正县| 宜兰市| 临邑县| 海淀区| 平昌县| 山西省| 海宁市| 武陟县| 民丰县| 郯城县| 新乡县| 清远市| 邯郸县| 松原市| 丰县| 卓资县| 台北市| 凉城县|