找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory; A First Course William Fulton,Joe Harris Textbook 2004 Springer Science+Business Media New York 2004 Abelian group.a

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:44:55 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:58 | 只看該作者
Examples; Induced Representations; Group Algebras; Real Representationson over.and say a few words about the analogous question for subfields of.other than ?. Everything in this lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford algebras and the Fourier transform, respectively (both exercises, of course, can be skipped).
43#
發(fā)表于 2025-3-29 02:00:43 | 只看該作者
44#
發(fā)表于 2025-3-29 06:19:59 | 只看該作者
The General Setup: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebrrticular, §14.2 is less clearly motivated by what we have worked out so far; the reader may wish to skim it for now and defer a more thorough reading until after going through some more of the examples of Lectures 15-20.
45#
發(fā)表于 2025-3-29 10:29:14 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/r/image/827399.jpg
46#
發(fā)表于 2025-3-29 13:58:56 | 只看該作者
https://doi.org/10.1007/978-1-4612-0979-9Abelian group; algebra; cohomology; cohomology group; finite group; group action; homology; Lie algebra; lie
47#
發(fā)表于 2025-3-29 17:49:35 | 只看該作者
978-0-387-97495-8Springer Science+Business Media New York 2004
48#
發(fā)表于 2025-3-29 20:46:42 | 只看該作者
49#
發(fā)表于 2025-3-30 00:11:40 | 只看該作者
Representations of sl3?, Part IThis lecture develops results for . analogous to those of §11.1 (though not in exactly the same order). This involves generalizing some of the basic terms of §11 (e.g., the notions of eigenvalue and eigenvector have to be redefined), but the basic ideas are in some sense already in §11. Certainly no techniques are involved beyond those of §11.1.
50#
發(fā)表于 2025-3-30 04:26:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永清县| 奈曼旗| 五家渠市| 青海省| 蕲春县| 浦县| 互助| 佳木斯市| 嘉兴市| 合山市| 黎川县| 马龙县| 定日县| 武城县| 宜章县| 郴州市| 依兰县| 贵南县| 郯城县| 奈曼旗| 叙永县| 开原市| 大邑县| 达尔| 苍溪县| 武川县| 瑞金市| 娱乐| 卢湾区| 郯城县| 遂平县| 新宾| 容城县| 宁都县| 湖口县| 宿迁市| 揭西县| 江门市| 宜章县| 泰宁县| 洪湖市|