找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory; A First Course William Fulton,Joe Harris Textbook 2004 Springer Science+Business Media New York 2004 Abelian group.a

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:39:11 | 只看該作者
sl4? and sln? specific Lie algebras carried out in this Part. We start in §15.1 by describing the Cartan subalgebra, roots, root spaces, etc., for.in general. We then give in §15.2 a detailed account of the representations of., which generalizes directly to.in particular, we deduce the existence part of Theorem
32#
發(fā)表于 2025-3-27 04:55:25 | 只看該作者
Symplectic Lie Algebrasbe in general the structure of a symplectic Lie algebra (that is, give a Cartan subalgebra, find the roots, describe the Killing form, and so on). We will then work out in some detail the representations of the specific algebra .. As in the case of the corresponding analysis of the special linear Li
33#
發(fā)表于 2025-3-27 05:58:06 | 只看該作者
Weyl’s Constructiong these to the standard representation.of .. While it may be easiest to read this material while the definitions of the Young symmetrizers are still fresh in the mind, the construction will not be used again until §15, so that this lecture can be deferred until then.
34#
發(fā)表于 2025-3-27 11:57:40 | 只看該作者
35#
發(fā)表于 2025-3-27 16:08:33 | 只看該作者
Representations of sl2? §11.1 and §11.2 are completely elementary (we do use the notion of symmetric powers of a vector space, but in a non-threatening way). §11.3 involves a fair amount of classical projective geometry, and can be skimmed or skipped by those not already familiar with the relevant basic notions from algebraic geometry.
36#
發(fā)表于 2025-3-27 20:21:07 | 只看該作者
37#
發(fā)表于 2025-3-27 23:51:20 | 只看該作者
Representations of,and,t we know about the symmetric group; this should be completely straightforward given just the basic ideas of the preceding lecture. In the latter case we start essentially from scratch. The two sections can be read (or not) independently; neither is logically necessary for the remainder of the book.
38#
發(fā)表于 2025-3-28 02:24:37 | 只看該作者
Lie Groupsy other tensors. Section 7.3, which discusses maps of Lie groups that are covering space maps of the underlying manifolds, may be skimmed and referred back to as needed, though working through it will help promote familiarity with basic examples of Lie groups.
39#
發(fā)表于 2025-3-28 08:57:55 | 只看該作者
40#
發(fā)表于 2025-3-28 12:05:44 | 只看該作者
Representations ofsl3?, Part II: Mainly Lots of Examplesne its multiplicities. The latter two sections correspond to §11.2 and §11.3 in the lecture on .. In particular, §13.4, like §11.3, involves some projective algebraic geometry and may be skipped by those to whom this is unfamiliar.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 09:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔西县| 郑州市| 达孜县| 沧源| 北安市| 高清| 金堂县| 墨脱县| 乌什县| 乐清市| 洪江市| 太谷县| 万安县| 南部县| 天峨县| 岫岩| 黄龙县| 青铜峡市| 贵南县| 尼勒克县| 德昌县| 梅州市| 博罗县| 石门县| 竹山县| 岳西县| 泗洪县| 河北省| 旅游| 建水县| 卢氏县| 灵武市| 武城县| 阿克陶县| 方正县| 海口市| 调兵山市| 犍为县| 泗洪县| 岳阳县| 财经|